Practical, non-invasive measurement of urinary catheter insertion forces and motions

Amer Safdari, Xiaoyin Ling, Michael B. Tradewell, Timothy M. Kowalewski, Robert M. Sweet

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Catheter associated urinary tract infections (CAUTI) are among the most common nonpayment hospital acquired conditions. Inexperienced health care providers placing indwelling urinary catheters are associated with an increased risk of CAUTI. The creation of high-fidelity simulators may reduce CAUTI risk during critical early learning. As a first step toward the creation of accurate simulators our group set out to characterize the mechanical aspects of urethral catheterization. This work presents an inexpensive, yet practical means of acquiring motion and force data from urethral catheter insertion procedures using OpenCV ArUco markers. Evaluation of the video system’s accuracy was done to understand the performance characteristics within the boundaries of the procedure’s target workspace. The tracking accuracy was validated to be roughly ± 3 mm in the plane of the camera, and ± 10 - 25 mm along its axis depending on the distance. Feasibility of using this platform in a clinically relevant setting was demonstrated by capturing the force and motion data when performing urinary catheterization on cadaveric donors (N=2).

Original languageEnglish (US)
Title of host publicationFrontiers in Biomedical Devices, BIOMED - 2019 Design of Medical Devices Conference, DMD 2019
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791841037
DOIs
StatePublished - 2019
Event2019 Design of Medical Devices Conference, DMD 2019 - Minneapolis, United States
Duration: Apr 15 2019Apr 18 2019

Publication series

NameFrontiers in Biomedical Devices, BIOMED - 2019 Design of Medical Devices Conference, DMD 2019

Conference

Conference2019 Design of Medical Devices Conference, DMD 2019
CountryUnited States
CityMinneapolis
Period4/15/194/18/19

Fingerprint Dive into the research topics of 'Practical, non-invasive measurement of urinary catheter insertion forces and motions'. Together they form a unique fingerprint.

  • Cite this

    Safdari, A., Ling, X., Tradewell, M. B., Kowalewski, T. M., & Sweet, R. M. (2019). Practical, non-invasive measurement of urinary catheter insertion forces and motions. In Frontiers in Biomedical Devices, BIOMED - 2019 Design of Medical Devices Conference, DMD 2019 (Frontiers in Biomedical Devices, BIOMED - 2019 Design of Medical Devices Conference, DMD 2019). American Society of Mechanical Engineers (ASME). https://doi.org/10.1115/DMD2019-3308