PPAR-gamma activation is associated with reduced liver ischemia-reperfusion injury and altered tissue-resident macrophages polarization in a mouse model

Ivan Linares, Kaveh Farrokhi, Juan Echeverri, Johan Moritz Kaths, Dagmar Kollmann, Matyas Hamar, Peter Urbanellis, Sujani Ganesh, Oyedele A. Adeyi, Paul Yip, Markus Selzner, Nazia Selzner

Research output: Contribution to journalArticlepeer-review

39 Scopus citations

Abstract

Background PPAR-gamma (γ) is highly expressed in macrophages and its activation affects their polarization. The effect of PPAR-γ activation on Kupffer cells (KCs) and liver ischemia-reperfusion injury (IRI) has not yet been evaluated. We investigated the effect of PPAR-γ activation on KC-polarization and IRI. Materials and methods Seventy percent (70%) liver ischemia was induced for 60mins. PPAR-γ-agonist or vehicle was administrated before reperfusion. PPAR-γ-antagonist was used to block PPAR-γ activation. Liver injury, necrosis, and apoptosis were assessed post-reperfusion. Flow-cytometry determined KC-phenotypes (pro-inflammatory Nitric Oxide +, anti-inflammatory CD206+ and anti-inflammatory IL-10+). Results Liver injury assessed by serum AST was significantly decreased in PPAR-γ-agonist versus control group at all time points post reperfusion (1hr: 3092±105 vs 4469±551; p = 0.042; 6hr: 7041±1160 vs 12193±1143; p = 0.015; 12hr: 5746±328 vs 8608±1259; p = 0.049). Furthermore, liver apoptosis measured by TUNEL-staining was significantly reduced in PPAR-γ- agonist versus control group post reperfusion (1hr:2.46±0.49 vs 6.90±0.85%;p = 0.001; 6hr:26.40±2.93 vs 50.13±8.29%; p = 0.048). H&E staining demonstrated less necrosis in PPAR-γ-agonist versus control group (24hr:26.66±4.78 vs 45.62±4.57%; p = 0.032). Thepercentage of pro-inflammatory NO+ KCs was significantly lower at all post reperfusion time points in the PPAR-γ-agonist versus control group (1hr:28.49±4.99 vs 53.54±9.15%; p = 0.040; 6hr:5.51±0.54 vs 31.12±9.58%; p = 0.009; 24hr:4.15±1.50 vs 17.10±4.77%; p = 0.043). In contrast, percentage of anti-inflammatory CD206+ KCs was significantly higher in PPAR-γ-agonist versus control group prior to IRI (8.62±0.96 vs 4.88 ±0.50%; p = 0.04). Administration of PPAR-γ-antagonist reversed the beneficial effects on AST, apoptosis, and pro-inflammatory NO+ KCs. Conclusion PPAR-γ activation reduces IRI and decreases the pro-inflammatory NO+ Kupffer cells. PPAR-γ activation can become an important tool to improve outcomes in liver surgery through decreasing the pro-inflammatory phenotype of KCs and IRI.

Original languageEnglish (US)
Article numbere0195212
JournalPloS one
Volume13
Issue number4
DOIs
StatePublished - Apr 2018

Bibliographical note

Publisher Copyright:
© 2018 Linares et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

PubMed: MeSH publication types

  • Journal Article

Fingerprint

Dive into the research topics of 'PPAR-gamma activation is associated with reduced liver ischemia-reperfusion injury and altered tissue-resident macrophages polarization in a mouse model'. Together they form a unique fingerprint.

Cite this