PPARγ gene C161T substitution alters lipid profile in Chinese patients with coronary artery disease and type 2 diabetes mellitus

Jing Wan, Shixi Xiong, Shengping Chao, Jianming Xiao, Yexin Ma, Jinghua Wang, Sabita Roy

Research output: Contribution to journalArticlepeer-review

47 Scopus citations

Abstract

Background: Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-activated transcription factor, which regulates gene expression of the key proteins involved in lipid metabolism, vascular inflammation, and proliferation. PPARγ may contribute to attenuating atherogenesis and postangioplasty restenosis. PPARγ C161→T substitution is associated with a reduced risk of coronary artery disease (CAD). Whether or not the gene substitution alters the risk of CAD in type 2 diabetes mellitus (T2DM) patients remains unclear.Methods: A total of 556 unrelated subjects from a Chinese Han population, including 89 healthy subjects, 78 CAD patients, 86 T2DM patients, and 303 CAD combined with T2DM patients, were recruited to enroll in this study. PPARγC161→T gene polymorphism was determined by polymerase chain reaction and restriction fragment length polymorphisms. Plasma levels of lipoproteins, apolipoproteins, glucose, and insulin were measured by ELISA or radioimmunoassay (RIA). The coronary artery lesions were evaluated by coronary angiography.Results: The frequency of the 161T allele in CAD, T2DM, and CAD combined with T2DM patients was similar to that observed in the healthy control group. However, in CAD combined with T2DM patients, the group with angiographically documented moderate stenoses had a higher frequency of the 161T allele in comparison to the group with severe stenoses (P < 0.05). Moreover, in CAD with T2DM patients, the triglyceride levels and apoB in CC homozygote carriers were significantly higher than those in "T" allele carriers.Conclusions: PPARγC161→T genotypes weren't significantly associated with the risk of CAD, but were markedly correlated with severity of disease vessels in patients with CAD and T2DM. Furthermore, PPARγC161→T substitution was associated with an altered adipose, but not glucose metabolism. These results indicate that the PPARγ C161→T polymorphism may reduce the risk of severe atherogenesis by modulation of adipose metabolism, especially triglycerides and apoB, in Chinese patients with CAD and T2DM.

Original languageEnglish (US)
Article number13
JournalCardiovascular Diabetology
Volume9
DOIs
StatePublished - Mar 24 2010

Bibliographical note

Funding Information:
This study was supported by Key Project Fund of Natural Science and Technology of Hubei Province (to Jing Wan, No. 2007ABA207). We thank Richard Charboneau for editing the manuscript, Fan Wang and Chenqi Xu for assistance of statistical analysis.

Fingerprint

Dive into the research topics of 'PPARγ gene C161T substitution alters lipid profile in Chinese patients with coronary artery disease and type 2 diabetes mellitus'. Together they form a unique fingerprint.

Cite this