Power-efficient dimensionality reduction for distributed channel-aware kalman tracking using WSNs

Hao Zhu, Ioannis D. Schizas, Georgios B. Giannakis

Research output: Contribution to journalArticlepeer-review

49 Scopus citations

Abstract

Estimation of nonstationary dynamical processes is of paramount importance in various applications including target tracking and navigation. The goal of this paper is to perform such tasks in a distributed fashion, using data collected at power-limited sensors which either communicate with a fusion center (FC) over noisy links, or, communicate with each other over nonideal channels in an ad hoc setting. In FC-based wireless sensor networks (WSNs) with a prescribed power budget, linear dimensionality reducing operators which account for the sensor-to-FC channel are derived per sensor to minimize the mean-square error (MSE) of Kalman filtered state estimates formed at the FC. Using these operators and state predictions fed back from the FC online, sensors reduce the dimensionality of their local innovation sequences and communicate them to the FC where tracking estimates are corrected. Analytical and numerical results advocate that the novel channel-aware distributed tracker outperforms competing alternatives. In ad hoc WSNs deployed to perform distributed tracking, one sensor broadcasts reduced-dimensionality data per time slot, according to a prespecified transmission order. The dimensionality reducing operators employed by the broadcasting sensor are selected to meet its transmit-power budget, while minimizing the state estimation MSE of the sensor with the lowest receiving SNR. Based on the received reduced-dimensionality data from the broadcasting sensor, every sensor in range performs the MSE optimal tracking. Corroborating distributed target tracking simulations based on distance-only observations illustrate that the novel scheme provides sensors with accurate estimates at affordable communication cost.

Original languageEnglish (US)
Pages (from-to)3193-3207
Number of pages15
JournalIEEE Transactions on Signal Processing
Volume57
Issue number8
DOIs
StatePublished - 2009

Bibliographical note

Funding Information:
Manuscript received October 23, 2008; accepted February 16, 2009. First published April 10, 2009; current version published July 15, 2009. The associate editor coordinating the review of this manuscript and approving it for publication was Prof. Mounir Ghogho. Work in this paper was supported by the U.S. DoD ARO Grant W911NF-05-1-0283; and also through collaborative participation in the Communications and Networks Consortium sponsored by the U.S. Army Research Laboratory under the Collaborative Technology Alliance Program, Cooperative Agreement DAAD19-01-2-0011. The U. S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation thereon. This paper was presented in the Fourteenth Workshop on Statistical Signal Processing, Madison, WI, August 26–29, 2007.

Keywords

  • Distributed tracking
  • Kalman filtering
  • Target tracking
  • Wireless sensor networks (WSNs)

Fingerprint Dive into the research topics of 'Power-efficient dimensionality reduction for distributed channel-aware kalman tracking using WSNs'. Together they form a unique fingerprint.

Cite this