Positive definite dictionary learning for region covariances

Research output: Chapter in Book/Report/Conference proceedingConference contribution

23 Scopus citations

Abstract

Sparse models have proven to be extremely successful in image processing and computer vision, and most efforts have been focused on sparse representation of vectors. The success of sparse modeling and the popularity of region covariances have inspired the development of sparse coding approaches for positive definite matrices. While in earlier work [1], the dictionary was pre-determined, it is clearly advantageous to learn a concise dictionary adaptively from the data at hand. In this paper, we propose a novel approach for dictionary learning over positive definite matrices. The dictionary is learned by alternating minimization between the sparse coding and dictionary update stages, and two different atom update methods are described. The online versions of the dictionary update techniques are also outlined. Experimental results demonstrate that the proposed learning methods yield better dictionaries for positive definite sparse coding. The learned dictionaries are applied to texture and face data, leading to improved classification accuracy and strong detection performance, respectively.

Original languageEnglish (US)
Title of host publication2011 International Conference on Computer Vision, ICCV 2011
Pages1013-1019
Number of pages7
DOIs
StatePublished - Dec 1 2011
Event2011 IEEE International Conference on Computer Vision, ICCV 2011 - Barcelona, Spain
Duration: Nov 6 2011Nov 13 2011

Publication series

NameProceedings of the IEEE International Conference on Computer Vision

Other

Other2011 IEEE International Conference on Computer Vision, ICCV 2011
CountrySpain
CityBarcelona
Period11/6/1111/13/11

Fingerprint Dive into the research topics of 'Positive definite dictionary learning for region covariances'. Together they form a unique fingerprint.

Cite this