Population Shape Collapse in Large Deformation Registration of MR Brain Images

Wei Shao, Gary E. Christensen, Hans J. Johnson, Joo H. Song, Oguz C. Durumeric, Casey P. Johnson, Joseph J. Shaffer, Vincent A. Magnotta, Jess G. Fiedorowicz, John A. Wemmie

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

This paper examines the shape collapse problem that occurs when registering a pair of images or a population of images of the brain to a reference (target) image coordinate system using diffeomorphic image registration. Shape collapse occurs when a foreground or background structure in an image with non-zero volume is transformed into a set of zero or near zero volume as measured on a discrete voxel lattice in the target image coordinate system. Shape collapse may occur during image registration when the moving image has a structure that is either missing or does not sufficiently overlap the corresponding structure in the target image[4]. Such a problem is common in image registration algorithms with large degrees of freedom such as many diffeomorphic image registration algorithms. Shape collapse is a concern when mapping functional data. For example, loss of signal may occur when mapping functional data such as fMRI, PET, SPECT using a transformation with a shape collapse if the functional signal occurs at the collapse region. This paper proposes an novel shape collapse measurement algorithm to detect the regions of shape collapse after image registration in pairwise registration. We further compute the shape collapse for a population of pairwise transformations such as occurs when registering many images to a common atlas coordinate system. Experiments are presented using the SyN diffeomorphic image registration algorithm. We demonstrate how changing the input parameters to the SyN registration algorithm can mitigate some of the collapse image registration artifacts.

Original languageEnglish (US)
Title of host publicationProceedings - 29th IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2016
PublisherIEEE Computer Society
Pages549-557
Number of pages9
ISBN (Electronic)9781467388504
DOIs
StatePublished - Dec 16 2016
Event29th IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2016 - Las Vegas, United States
Duration: Jun 26 2016Jul 1 2016

Publication series

NameIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
ISSN (Print)2160-7508
ISSN (Electronic)2160-7516

Other

Other29th IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2016
Country/TerritoryUnited States
CityLas Vegas
Period6/26/167/1/16

Keywords

  • Diffeomorphic image registration
  • Shape collapse

Fingerprint

Dive into the research topics of 'Population Shape Collapse in Large Deformation Registration of MR Brain Images'. Together they form a unique fingerprint.

Cite this