Polymorphisms in DNA repair genes, ionizing radiation exposure and risk of breast cancer in U.S. radiologic technologists

Parveen Bhatti, Jeffery P. Struewing, Bruce H. Alexander, Michael Hauptmann, Laura Bowen, Lutecia H. Mateus-Pereira, Marbin A. Pineda, Steven L. Simon, Robert M. Weinstock, Marvin Rosenstein, Marilyn Stovall, Dale L. Preston, Martha S. Linet, Michele M. Doody, Alice J. Sigurdson

Research output: Contribution to journalArticlepeer-review

53 Scopus citations


High-dose ionizing radiation exposure to the breast and rare autosomal dominant genes have been linked with increased breast cancer risk, but the role of low-to-moderate doses from protracted radiation exposure in breast cancer risk and its potential modification by polymorphisms in DNA repair genes has not been previously investigated among large numbers of radiation-exposed women with detailed exposure data. Using carefully reconstructed estimates of cumulative breast doses from occupational and personal diagnostic ionizing radiation, we investigated the potential modification of radiation-related breast cancer risk by 55 candidate single nucleotide polymorphisms in 17 genes involved in base excision or DNA double-strand break repair among 859 cases and 1083 controls from the United States Radiologic Technologists (USRT) cohort. In multivariable analyses, WRN V114I (rs2230009) significantly modified the association between cumulative occupational breast dose and risk of breast cancer (adjusted for personal diagnostic exposure) (p = 0.04) and BRCA1 D652N (rs4986850), PRKDC IVS15 + 6C > T (rs1231202), PRKDC IVS34 + 39T > C (rs8178097) and PRKDC IVS31 - 634C > A (rs10109984) significantly altered the personal diagnostic radiation exposure-response relationship (adjusted for occupational dose) (p ≤ 0.05). None of the remaining 50 SNPs significantly modified breast cancer radiation dose-response relationships. The USRT genetic study provided a unique opportunity to examine the joint effects of common genetic variation and ionizing radiation exposure on breast cancer risk using detailed occupational and personal diagnostic exposure data. The suggestive evidence found for modification of radiation-related breast cancer risk for 5 of the 55 SNPs evaluated requires confirmation in larger studies of women with quantified radiation breast doses in the low-to-moderate range.

Original languageEnglish (US)
Pages (from-to)177-182
Number of pages6
JournalInternational Journal of Cancer
Issue number1
StatePublished - Jan 1 2008


  • Breast cancer
  • DNA repair genes
  • Ionizing radiation
  • Single nucleotide polymorphisms


Dive into the research topics of 'Polymorphisms in DNA repair genes, ionizing radiation exposure and risk of breast cancer in U.S. radiologic technologists'. Together they form a unique fingerprint.

Cite this