TY - JOUR
T1 - Polymersomes with ionic liquid interiors dispersed in water
AU - Bai, Zhifeng
AU - Lodge, Timothy P.
PY - 2010/11/17
Y1 - 2010/11/17
N2 - We describe polymersomes with ionic liquid interiors dispersed in water. The vesicles are prepared via a simple and spontaneous migration of poly(butadiene-b-ethylene oxide) (PB-PEO) block copolymer vesicles from a hydrophobic ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][TFSI]), to water at room temperature. As PB is insoluble in both water and [EMIM][TFSI] and PEO is well solvated in both media, the vesicles feature a PB membrane with PEO brushes forming both interior and exterior coronas. The robust and stable PB-PEO vesicles migrate across the liquid-liquid interface with their ionic liquid interiors intact and form a stabilized aqueous dispersion of vesicles enclosing microscopic ionic liquid pools. The nanostructure of the vesicles with ionic liquid interiors dispersed in water is characterized by direct visualization using cryogenic transmission electron microscopy. Upon heating, the vesicles can be quantitatively transferred back to [EMIM][TFSI], thus enabling facile recovery. The reversible transport capability of the shuttle system is demonstrated by the use of distinct hydrophobic dyes, which are selectively and simultaneously loaded in the vesicle membrane and interior. Furthermore, the fluorescence of the loaded dyes in the vesicles enables probing of the microenvironment of the vesicular ionic liquid interior through solvatochromism and direct imaging of the vesicles using laser scanning confocal microscopy. This vesicle system is of particular interest as a nanocarrier or nanoreactor for reactions, catalysis, and separations using ionic liquids.
AB - We describe polymersomes with ionic liquid interiors dispersed in water. The vesicles are prepared via a simple and spontaneous migration of poly(butadiene-b-ethylene oxide) (PB-PEO) block copolymer vesicles from a hydrophobic ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][TFSI]), to water at room temperature. As PB is insoluble in both water and [EMIM][TFSI] and PEO is well solvated in both media, the vesicles feature a PB membrane with PEO brushes forming both interior and exterior coronas. The robust and stable PB-PEO vesicles migrate across the liquid-liquid interface with their ionic liquid interiors intact and form a stabilized aqueous dispersion of vesicles enclosing microscopic ionic liquid pools. The nanostructure of the vesicles with ionic liquid interiors dispersed in water is characterized by direct visualization using cryogenic transmission electron microscopy. Upon heating, the vesicles can be quantitatively transferred back to [EMIM][TFSI], thus enabling facile recovery. The reversible transport capability of the shuttle system is demonstrated by the use of distinct hydrophobic dyes, which are selectively and simultaneously loaded in the vesicle membrane and interior. Furthermore, the fluorescence of the loaded dyes in the vesicles enables probing of the microenvironment of the vesicular ionic liquid interior through solvatochromism and direct imaging of the vesicles using laser scanning confocal microscopy. This vesicle system is of particular interest as a nanocarrier or nanoreactor for reactions, catalysis, and separations using ionic liquids.
UR - http://www.scopus.com/inward/record.url?scp=78449255762&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78449255762&partnerID=8YFLogxK
U2 - 10.1021/ja107751k
DO - 10.1021/ja107751k
M3 - Article
C2 - 20964305
AN - SCOPUS:78449255762
SN - 0002-7863
VL - 132
SP - 16265
EP - 16270
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 45
ER -