TY - JOUR
T1 - Polymer microring resonators for high-sensitivity and wideband photoacoustic imaging
AU - Chen, Sung Liang
AU - Huang, Sheng Wen
AU - Ling, Tao
AU - Ashkenazi, Shai
AU - Guo, L. Jay
PY - 2009
Y1 - 2009
N2 - Polymer microring resonators have been exploited for high-sensitivity and wideband photoacoustic imaging. To demonstrate high-sensitivity ultrasound detection, highfrequency photoacoustic imaging of a 49-μm-diameter black bead at an imaging depth of 5 mm was imaged photoacoustically using a synthetic 2-D array with 249 elements and a low laser fluence of 0.35 mJ/cm2. A bandpass filter with a center frequency of 28 MHz and a bandwidth of 16 MHz was applied to all element data but without signal averaging, and a signalto- noise ratio of 16.4 dB was obtained. A wideband detector response is essential for imaging reconstruction of multiscale objects, e.g., various sizes of tissues, by using a range of characteristic acoustic wavelengths. A simulation of photoacoustic tomography of beads shows that objects with their boundaries characteristic of high spatial frequencies and the inner structure primarily of low spatial frequency components can be faithfully reconstructed using such a detector. Photoacoustic tomography experiments of 49- and 301-μm-diameter beads were presented. A high resolution of 12.5 μm was obtained. The boundary of a 301-μm bead was imaged clearly. The results demonstrated that the high sensitivity and broadband response of polymer microring resonators have potential for high resolution and high-fidelity photoacoustic imaging.
AB - Polymer microring resonators have been exploited for high-sensitivity and wideband photoacoustic imaging. To demonstrate high-sensitivity ultrasound detection, highfrequency photoacoustic imaging of a 49-μm-diameter black bead at an imaging depth of 5 mm was imaged photoacoustically using a synthetic 2-D array with 249 elements and a low laser fluence of 0.35 mJ/cm2. A bandpass filter with a center frequency of 28 MHz and a bandwidth of 16 MHz was applied to all element data but without signal averaging, and a signalto- noise ratio of 16.4 dB was obtained. A wideband detector response is essential for imaging reconstruction of multiscale objects, e.g., various sizes of tissues, by using a range of characteristic acoustic wavelengths. A simulation of photoacoustic tomography of beads shows that objects with their boundaries characteristic of high spatial frequencies and the inner structure primarily of low spatial frequency components can be faithfully reconstructed using such a detector. Photoacoustic tomography experiments of 49- and 301-μm-diameter beads were presented. A high resolution of 12.5 μm was obtained. The boundary of a 301-μm bead was imaged clearly. The results demonstrated that the high sensitivity and broadband response of polymer microring resonators have potential for high resolution and high-fidelity photoacoustic imaging.
UR - http://www.scopus.com/inward/record.url?scp=73949145716&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=73949145716&partnerID=8YFLogxK
U2 - 10.1109/TUFFC.2009.1335
DO - 10.1109/TUFFC.2009.1335
M3 - Article
C2 - 19942534
AN - SCOPUS:73949145716
SN - 0885-3010
VL - 56
SP - 2482
EP - 2491
JO - IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
JF - IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
IS - 11
M1 - 5306728
ER -