Abstract
Polyolefins have low free surface energy that prevents good wettability of adhesives or paint emulsions to their surface. This work shows that adhesion of olefin block copolymers (OBC) to a polyurethane-based paint can be significantly improved by blending thermoplastic polyurethane (TPU) into OBC. Furthermore, blend morphologies near the paint/polymer interface, and surface compositions of injection molded plaques, were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) in order to explore the underlying mechanism of paint adhesion to TPU/OBC blends. It was found that for 35 wt% and 25 wt% TPU loading, the top paint layer is well-attached at the interface, whereas for 15 wt% loading, there was incomplete wetting of the paint, and a gap between the polymer substrate and paint was apparent. XPS and SEM gave consistent results demonstrating that outermost surface composition of TPU in these blends is slightly higher than in the bulk. It is speculated here that, during painting and the subsequent drying step, polyurethane chains from the paint diffuse into the blend substrate and entangle with TPU in the blend. The entanglement between paint and substrate generates a physical link that provides adhesion.
Original language | English (US) |
---|---|
Pages (from-to) | 492-497 |
Number of pages | 6 |
Journal | Progress in Organic Coatings |
Volume | 72 |
Issue number | 3 |
DOIs | |
State | Published - Nov 2011 |
Bibliographical note
Funding Information:This work was funded by The Dow Chemical Company . Parts of this work were carried out in the Characterization Facility, University of Minnesota, a member of the NSF-funded Materials Research Facilities Network ( www.mrfn.org ) via the MRSEC program.
Keywords
- Adhesion
- Blend
- Paint
- Polyolefin
- Polyurethane
- Surface