Abstract
Polyelectrolyte complex coacervates of homologous (co)polyelectrolytes with a near-ideally random distribution of a charged and neutral ethylene oxide comonomer were synthesized. The unique platform provided by these building blocks enabled an investigation of the phase behavior across charge fractions 0.10 ≤ f ≤ 1.0. Experimental phase diagrams for f = 0.30-1.0 were obtained from thermogravimetric analysis of complex and supernatant phases and contrasted with molecular dynamics simulations and theoretical scaling laws. At intermediate to high f, a dependence of polymer weight fraction in the salt-free coacervate phase (wP,c) of wP,c ∼f0.37±0.01 was extracted; this trend was in good agreement with accompanying simulation predictions. Below f = 0.50, wP,c was found to decrease more dramatically, qualitatively in line with theory and simulations predicting an exponent of 2/3 at f ≤ 0.25. Preferential salt partitioning to either coacervate or supernatant was found to be dictated by the chemistry of the constituent (co)polyelectrolytes.
Original language | English (US) |
---|---|
Pages (from-to) | 6878-6890 |
Number of pages | 13 |
Journal | Macromolecules |
Volume | 54 |
Issue number | 14 |
DOIs | |
State | Published - Jul 27 2021 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:©