TY - JOUR
T1 - Polyamines are traps for reactive intermediates in furan metabolism
AU - Peterson, Lisa A.
AU - Phillips, Martin B.
AU - Lu, Ding
AU - Sullivan, Mathilde M.
PY - 2011/11/21
Y1 - 2011/11/21
N2 - Furan is toxic and carcinogenic in rodents. Because of the large potential for human exposure, furan is classified as a possible human carcinogen. The detailed mechanism by which furan causes toxicity and cancer is not yet known. Since furan toxicity requires cytochrome P450-catalyzed oxidation of furan, we have characterized the urinary and hepatocyte metabolites of furan to gain insight into the chemical nature of the reactive intermediate. Previous studies in hepatocytes indicated that furan is oxidized to the reactive α,β-unsaturated dialdehyde, cis-2-butene-1,4-dial (BDA), which reacts with glutathione (GSH) to form 2-(S-glutathionyl)succinaldehyde (GSH-BDA). This intermediate forms pyrrole cross-links with cellular amines such as lysine and glutamine. In this article, we demonstrate that GSH-BDA also forms cross-links with ornithine, putrescine, and spermidine when furan is incubated with rat hepatocytes. The relative levels of these metabolites are not completely explained by hepatocellular levels of the amines or by their reactivity with GSH-BDA. Mercapturic acid derivatives of the spermidine cross-links were detected in the urine of furan-treated rats, which indicates that this metabolic pathway occurs in vivo. Their detection in furan-treated hepatocytes and in urine from furan-treated rats indicates that polyamines may play an important role in the toxicity of furan.
AB - Furan is toxic and carcinogenic in rodents. Because of the large potential for human exposure, furan is classified as a possible human carcinogen. The detailed mechanism by which furan causes toxicity and cancer is not yet known. Since furan toxicity requires cytochrome P450-catalyzed oxidation of furan, we have characterized the urinary and hepatocyte metabolites of furan to gain insight into the chemical nature of the reactive intermediate. Previous studies in hepatocytes indicated that furan is oxidized to the reactive α,β-unsaturated dialdehyde, cis-2-butene-1,4-dial (BDA), which reacts with glutathione (GSH) to form 2-(S-glutathionyl)succinaldehyde (GSH-BDA). This intermediate forms pyrrole cross-links with cellular amines such as lysine and glutamine. In this article, we demonstrate that GSH-BDA also forms cross-links with ornithine, putrescine, and spermidine when furan is incubated with rat hepatocytes. The relative levels of these metabolites are not completely explained by hepatocellular levels of the amines or by their reactivity with GSH-BDA. Mercapturic acid derivatives of the spermidine cross-links were detected in the urine of furan-treated rats, which indicates that this metabolic pathway occurs in vivo. Their detection in furan-treated hepatocytes and in urine from furan-treated rats indicates that polyamines may play an important role in the toxicity of furan.
UR - http://www.scopus.com/inward/record.url?scp=81755172321&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=81755172321&partnerID=8YFLogxK
U2 - 10.1021/tx200273z
DO - 10.1021/tx200273z
M3 - Article
C2 - 21842885
AN - SCOPUS:81755172321
SN - 0893-228X
VL - 24
SP - 1924
EP - 1936
JO - Chemical Research in Toxicology
JF - Chemical Research in Toxicology
IS - 11
ER -