TY - JOUR
T1 - Platelet-derived growth factor stimulates non-mitochondrial Ca2+ uptake and inhibits mitogen-induced Ca2+ signaling in Swiss 3T3 fibroblasts
AU - Powis, G.
AU - Seewald, M. J.
AU - Sehgal, I.
AU - Iaizzo, P. A.
AU - Olsen, R. A.
PY - 1990/6/25
Y1 - 1990/6/25
N2 - Changes in intracellular free Ca2+ concentration ([Ca2+]i) were used to study the interaction between mitogens in Swiss 3T3 fibroblasts. Platelet-derived growth factor (PDGF) produced an increase in [Ca2+]i and markedly decreased the increases in [Ca2+]i caused by subsequent addition of bradykinin and vasopressin. If the order of the additions was reversed the [Ca2+]i response to PDGF was not inhibited by bradykinin or vasopressin. Inhibition of protein kinase C by staurosporine or chronic treatment of the cells with phorbol 12-myristate 13-acetate prevented the inhibitory effect of PDGF on the [Ca2+]i response to vasopressin but not bradykinin. PDGF did not decrease the receptor binding of bradykinin and produced only a small decrease in the receptor binding of vasopressin. PDGF decreased the rise in [Ca2+]i caused by the Ca2+ ionophores 4-bromo-A23187 and ionomycin and by a membrane perturbing ether lipid, 1-octadecyl-2-methyl-rac-glycero-3-phosphocholine, both in the presence and absence of external Ca2+. There was no change in cell 45Ca2+ influx caused by PDGF, vasopressin, or bradykinin. 45Ca2+ efflux from cells exposed to PDGF and vasopressin mirrored the changes in [Ca2+]i caused by the agents, that is, PDGF added after vasopressin produced a further increase in 45Ca2+ efflux but vasopressin did not increase 45Ca2+ efflux after PDGF. PDGF but not vasopressin caused an increase in the uptake of 45Ca2+ into an inositol 1,4,5-trisphosphate-insensitive non-mitochondrial store in permeabilized cells. The results suggest that the decreased [Ca2+]i response to mitogens after PDGF represents an action of PDGF at a point beyond the release of intracellular Ca2+ and the influx of external Ca2+, caused by an increase in the rate of removal of cytoplasmic free Ca2+. This increased removal of cytoplasmic Ca2+ by PDGF is not due to the increased export of Ca2+ from the cell but results from increased Ca2+ uptake into non-mitochondrial stores.
AB - Changes in intracellular free Ca2+ concentration ([Ca2+]i) were used to study the interaction between mitogens in Swiss 3T3 fibroblasts. Platelet-derived growth factor (PDGF) produced an increase in [Ca2+]i and markedly decreased the increases in [Ca2+]i caused by subsequent addition of bradykinin and vasopressin. If the order of the additions was reversed the [Ca2+]i response to PDGF was not inhibited by bradykinin or vasopressin. Inhibition of protein kinase C by staurosporine or chronic treatment of the cells with phorbol 12-myristate 13-acetate prevented the inhibitory effect of PDGF on the [Ca2+]i response to vasopressin but not bradykinin. PDGF did not decrease the receptor binding of bradykinin and produced only a small decrease in the receptor binding of vasopressin. PDGF decreased the rise in [Ca2+]i caused by the Ca2+ ionophores 4-bromo-A23187 and ionomycin and by a membrane perturbing ether lipid, 1-octadecyl-2-methyl-rac-glycero-3-phosphocholine, both in the presence and absence of external Ca2+. There was no change in cell 45Ca2+ influx caused by PDGF, vasopressin, or bradykinin. 45Ca2+ efflux from cells exposed to PDGF and vasopressin mirrored the changes in [Ca2+]i caused by the agents, that is, PDGF added after vasopressin produced a further increase in 45Ca2+ efflux but vasopressin did not increase 45Ca2+ efflux after PDGF. PDGF but not vasopressin caused an increase in the uptake of 45Ca2+ into an inositol 1,4,5-trisphosphate-insensitive non-mitochondrial store in permeabilized cells. The results suggest that the decreased [Ca2+]i response to mitogens after PDGF represents an action of PDGF at a point beyond the release of intracellular Ca2+ and the influx of external Ca2+, caused by an increase in the rate of removal of cytoplasmic free Ca2+. This increased removal of cytoplasmic Ca2+ by PDGF is not due to the increased export of Ca2+ from the cell but results from increased Ca2+ uptake into non-mitochondrial stores.
UR - http://www.scopus.com/inward/record.url?scp=0025365929&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0025365929&partnerID=8YFLogxK
M3 - Article
C2 - 2113051
AN - SCOPUS:0025365929
SN - 0021-9258
VL - 265
SP - 10266
EP - 10273
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 18
ER -