TY - JOUR
T1 - Plastic mulching reduces nitrogen footprint of food crops in China
T2 - A meta-analysis
AU - Wang, Linlin
AU - Coulter, Jeffrey A.
AU - Li, Lingling
AU - Luo, Zhuzhu
AU - Chen, Yinglong
AU - Deng, Xiping
AU - Xie, Junhong
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2020/12/15
Y1 - 2020/12/15
N2 - Sustainably feeding the growing population amid rising global temperatures and dwindling resources is a grand challenge facing mankind. Plastic mulching (PM) is widely used in China aiming to the increase of crop productivity. However, the impact of PM on reactive nitrogen (Nr) emissions and nitrogen (N) footprint has not been explicitly described. In this study, we collected 4051 observations from 394 published papers for potato (Solanum tuberosum L.), maize (Zea mays L.), and wheat (Triticum aestivum L.), and used meta-analysis to investigate how PM affected crop yield, net economic return, Nr emissions, and N footprints including nitrogen footprint per unit of output energy (NFo) and nitrogen footprint per unit of net economic return (NFe) at regional scale and across a range of precipitation and N fertilization gradients in China. The meta-analysis showed that compared to non-PM practice, PM increased grain yield by 25, 27, and 20% in potato, maize, and wheat, respectively, and enhanced net economic return by 19, 29, and 22%, respectively, with corresponding reduction in NFo of 24, 36, and 18% and NFe of 19, 37, and 19%, respectively. Potato and maize had greater energy output and net economic return than wheat. Plastic mulching was more effective in improving net economic return (or energy output) and reducing N footprints (i.e., NFe and NFo) in the semiarid region (i.e., annual precipitation <600 mm) when N was applied at 100–200 kg N ha−1, especially in potato and maize. Our analysis suggests that the use of PM enhanced grain yield and net economic return while lowering the N footprint without increasing Nr emission. Therefore, PM has great potential to mitigate Nr loss in China when crop species, N fertilization rate, and local environmental factors (i.e., growing region and annual precipitation) are appropriately considered.
AB - Sustainably feeding the growing population amid rising global temperatures and dwindling resources is a grand challenge facing mankind. Plastic mulching (PM) is widely used in China aiming to the increase of crop productivity. However, the impact of PM on reactive nitrogen (Nr) emissions and nitrogen (N) footprint has not been explicitly described. In this study, we collected 4051 observations from 394 published papers for potato (Solanum tuberosum L.), maize (Zea mays L.), and wheat (Triticum aestivum L.), and used meta-analysis to investigate how PM affected crop yield, net economic return, Nr emissions, and N footprints including nitrogen footprint per unit of output energy (NFo) and nitrogen footprint per unit of net economic return (NFe) at regional scale and across a range of precipitation and N fertilization gradients in China. The meta-analysis showed that compared to non-PM practice, PM increased grain yield by 25, 27, and 20% in potato, maize, and wheat, respectively, and enhanced net economic return by 19, 29, and 22%, respectively, with corresponding reduction in NFo of 24, 36, and 18% and NFe of 19, 37, and 19%, respectively. Potato and maize had greater energy output and net economic return than wheat. Plastic mulching was more effective in improving net economic return (or energy output) and reducing N footprints (i.e., NFe and NFo) in the semiarid region (i.e., annual precipitation <600 mm) when N was applied at 100–200 kg N ha−1, especially in potato and maize. Our analysis suggests that the use of PM enhanced grain yield and net economic return while lowering the N footprint without increasing Nr emission. Therefore, PM has great potential to mitigate Nr loss in China when crop species, N fertilization rate, and local environmental factors (i.e., growing region and annual precipitation) are appropriately considered.
KW - Economic benefit
KW - Nitrogen footprint
KW - Plastic mulching
KW - Reactive nitrogen emissions
KW - Zea mays
KW - China
KW - Soil
KW - Nitrogen/analysis
KW - Agriculture
KW - Crops, Agricultural
KW - Plastics
KW - Fertilizers
UR - http://www.scopus.com/inward/record.url?scp=85089403807&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85089403807&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2020.141479
DO - 10.1016/j.scitotenv.2020.141479
M3 - Article
C2 - 32818896
AN - SCOPUS:85089403807
SN - 0048-9697
VL - 748
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 141479
ER -