Plasmodium species occurrence, temporal distribution and interaction in a child-aged population in rural Burkina Faso

Awa Gnémé, Wamdaogo M. Guelbéogo, Michelle M Riehle, Alfred B. Tiono, Amidou Diarra, Gustave B. Kabré, N'Falé Sagnon, Kenneth D. Vernick

Research output: Contribution to journalArticlepeer-review

37 Scopus citations


Background: Malaria can be caused by five Plasmodium species. Due to their higher prevalence, much of the research concentrates on Plasmodium falciparum and Plasmodium vivax. In Burkina Faso, where P. falciparum co-exists with Plasmodium malariae and Plasmodium ovale, there is not much data about the prevalence of the latter two species across human population. Moreover, interactions between co-infecting Plasmodium species are not documented. The aim of the current research is to determine species-specific prevalence and temporal distribution. The potential interactions between co-infecting Plasmodium species amongst the child-aged population in Burkina Faso are also discussed. Methods. The study took place in the Sudanese savannah zone in Burkina Faso in a rural village, Laye. Surveys were conducted during the wet season across four years, 2007 to 2010. Volunteers aged three to 15 years with parental signed consent were enrolled. Ten children per week were screened for any history of pain, fever. Parasitological data were obtained by blood slide processing. Results: Three sympatric Plasmodium species were recorded during this study with an average prevalence of 70.7%. Species temporal distribution showed an increase of P. malariae parasite prevalence from 0.9% in 2007 to 13.2% in 2010. Within a season, P. falciparum occurred in the overall study period while P. malariae and P. ovale were highly prevalent after the rainy part of this period. Species-specific infection analysis showed that in a comparison of mono-infections, P. malariae gametocyte prevalence and median density were higher than those of P. falciparum (88.9% vs 34.5% and 124.0 vs 40.0 gametocytes/μl, respectively). Likewise, in P. falciparum co-infections with P. malariae or P. ovale, gametocyte prevalence was also higher than in P. falciparum mono-infection. However, in P. falciparum mixed infection with P. malariae, P. falciparum gametocyte prevalence and median density as well as asexual form density decreased compared to P. falciparum mono-infection while for P. malariae mono-infection, only asexual form density significantly vary. Conclusion: These data revealed high gametocyte prevalence in other Plasmodium species than P. falciparum with a significant variation of P. malariae gametocyte carriers and gametocyte density across years. Molecular tools and entomological studies are needed to highly assess species-specific contribution to malaria transmission.

Original languageEnglish (US)
Article number67
JournalMalaria Journal
Issue number1
StatePublished - 2013

Bibliographical note

Funding Information:
We are grateful to children and their parents from Laye for their participation to this study. We also thank the staff of CNRFP for his technical assistance. This work received financial support from the American National Institute of Health (NIH). We are grateful to anonymous reviewers for their helpful comments.


  • Burkina faso
  • Gametocytes
  • Infection
  • Laye
  • Malaria
  • Plasmodium
  • Species


Dive into the research topics of 'Plasmodium species occurrence, temporal distribution and interaction in a child-aged population in rural Burkina Faso'. Together they form a unique fingerprint.

Cite this