Planar biaxial extension of the lumbar facet capsular ligament reveals significant in-plane shear forces

Amy A. Claeson, Victor H Barocas

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

The lumbar facet capsular ligament (FCL) articulates with six degrees of freedom during spinal motions of flexion/extension, lateral bending, and axial rotation. The lumbar FCL is composed of highly aligned collagen fiber bundles on the posterior surface (oriented primarily laterally between the rigid articular facets) and irregularly oriented elastin on the anterior surface. Because the FCL is a capsule, it has multiple insertion sites across the lumbar facet joint, which, along with its material structure, give rise to complicated deformations in vivo. We performed planar equibiaxial mechanical tests on excised healthy cadaveric lumbar FCLs (n=6) to extract normal and shear reaction forces, and fit sample-specific two-fiber-family finite element models to the experimental force data. An eight-parameter anisotropic, hyperelastic model was used. Shear forces at maximum extension (mean values of 1.68 N and 3.01 N in the two directions) were of comparable magnitude to the normal forces perpendicular to the aligned collagen fiber bundles (4.67 N) but smaller than normal forces in the fiber direction (16.11 N). Inclusion of the experimental shear forces in the model optimization yielded fits with highly aligned fibers oriented at a specific angle across all samples, typically with one fiber population aligned nearly horizontally and the other at an oblique angle. Conversely, models fit to only the normal force data resulted in a broad range of fiber angles with low specificity. We found that shear forces generated through planar equibiaxial extension aided the model fit in describing the anisotropic nature of the FCL surface.

Original languageEnglish (US)
Pages (from-to)127-136
Number of pages10
JournalJournal of the Mechanical Behavior of Biomedical Materials
Volume65
DOIs
StatePublished - Jan 1 2017

Fingerprint

Ligaments
Fibers
Collagen
Elastin
Capsules

Cite this

@article{54f45476d37949b289a071176344ac48,
title = "Planar biaxial extension of the lumbar facet capsular ligament reveals significant in-plane shear forces",
abstract = "The lumbar facet capsular ligament (FCL) articulates with six degrees of freedom during spinal motions of flexion/extension, lateral bending, and axial rotation. The lumbar FCL is composed of highly aligned collagen fiber bundles on the posterior surface (oriented primarily laterally between the rigid articular facets) and irregularly oriented elastin on the anterior surface. Because the FCL is a capsule, it has multiple insertion sites across the lumbar facet joint, which, along with its material structure, give rise to complicated deformations in vivo. We performed planar equibiaxial mechanical tests on excised healthy cadaveric lumbar FCLs (n=6) to extract normal and shear reaction forces, and fit sample-specific two-fiber-family finite element models to the experimental force data. An eight-parameter anisotropic, hyperelastic model was used. Shear forces at maximum extension (mean values of 1.68 N and 3.01 N in the two directions) were of comparable magnitude to the normal forces perpendicular to the aligned collagen fiber bundles (4.67 N) but smaller than normal forces in the fiber direction (16.11 N). Inclusion of the experimental shear forces in the model optimization yielded fits with highly aligned fibers oriented at a specific angle across all samples, typically with one fiber population aligned nearly horizontally and the other at an oblique angle. Conversely, models fit to only the normal force data resulted in a broad range of fiber angles with low specificity. We found that shear forces generated through planar equibiaxial extension aided the model fit in describing the anisotropic nature of the FCL surface.",
author = "Claeson, {Amy A.} and Barocas, {Victor H}",
year = "2017",
month = "1",
day = "1",
doi = "10.1016/j.jmbbm.2016.08.019",
language = "English (US)",
volume = "65",
pages = "127--136",
journal = "Journal of the Mechanical Behavior of Biomedical Materials",
issn = "1751-6161",
publisher = "Elsevier BV",

}

TY - JOUR

T1 - Planar biaxial extension of the lumbar facet capsular ligament reveals significant in-plane shear forces

AU - Claeson, Amy A.

AU - Barocas, Victor H

PY - 2017/1/1

Y1 - 2017/1/1

N2 - The lumbar facet capsular ligament (FCL) articulates with six degrees of freedom during spinal motions of flexion/extension, lateral bending, and axial rotation. The lumbar FCL is composed of highly aligned collagen fiber bundles on the posterior surface (oriented primarily laterally between the rigid articular facets) and irregularly oriented elastin on the anterior surface. Because the FCL is a capsule, it has multiple insertion sites across the lumbar facet joint, which, along with its material structure, give rise to complicated deformations in vivo. We performed planar equibiaxial mechanical tests on excised healthy cadaveric lumbar FCLs (n=6) to extract normal and shear reaction forces, and fit sample-specific two-fiber-family finite element models to the experimental force data. An eight-parameter anisotropic, hyperelastic model was used. Shear forces at maximum extension (mean values of 1.68 N and 3.01 N in the two directions) were of comparable magnitude to the normal forces perpendicular to the aligned collagen fiber bundles (4.67 N) but smaller than normal forces in the fiber direction (16.11 N). Inclusion of the experimental shear forces in the model optimization yielded fits with highly aligned fibers oriented at a specific angle across all samples, typically with one fiber population aligned nearly horizontally and the other at an oblique angle. Conversely, models fit to only the normal force data resulted in a broad range of fiber angles with low specificity. We found that shear forces generated through planar equibiaxial extension aided the model fit in describing the anisotropic nature of the FCL surface.

AB - The lumbar facet capsular ligament (FCL) articulates with six degrees of freedom during spinal motions of flexion/extension, lateral bending, and axial rotation. The lumbar FCL is composed of highly aligned collagen fiber bundles on the posterior surface (oriented primarily laterally between the rigid articular facets) and irregularly oriented elastin on the anterior surface. Because the FCL is a capsule, it has multiple insertion sites across the lumbar facet joint, which, along with its material structure, give rise to complicated deformations in vivo. We performed planar equibiaxial mechanical tests on excised healthy cadaveric lumbar FCLs (n=6) to extract normal and shear reaction forces, and fit sample-specific two-fiber-family finite element models to the experimental force data. An eight-parameter anisotropic, hyperelastic model was used. Shear forces at maximum extension (mean values of 1.68 N and 3.01 N in the two directions) were of comparable magnitude to the normal forces perpendicular to the aligned collagen fiber bundles (4.67 N) but smaller than normal forces in the fiber direction (16.11 N). Inclusion of the experimental shear forces in the model optimization yielded fits with highly aligned fibers oriented at a specific angle across all samples, typically with one fiber population aligned nearly horizontally and the other at an oblique angle. Conversely, models fit to only the normal force data resulted in a broad range of fiber angles with low specificity. We found that shear forces generated through planar equibiaxial extension aided the model fit in describing the anisotropic nature of the FCL surface.

UR - http://www.scopus.com/inward/record.url?scp=84983782734&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84983782734&partnerID=8YFLogxK

U2 - 10.1016/j.jmbbm.2016.08.019

DO - 10.1016/j.jmbbm.2016.08.019

M3 - Article

VL - 65

SP - 127

EP - 136

JO - Journal of the Mechanical Behavior of Biomedical Materials

JF - Journal of the Mechanical Behavior of Biomedical Materials

SN - 1751-6161

ER -