TY - JOUR
T1 - Planar biaxial behavior of fibrin-based tissue-engineered heart valve leaflets
AU - Robinson, Paul S.
AU - Tranquillo, Robert T.
PY - 2009/10/1
Y1 - 2009/10/1
N2 - To design more effective tissue-engineered heart valve replacements, the replacement tissue may need to mimic the biaxial stress-strain behavior of native heart valve tissue. This study characterized the planar biaxial properties of tissue-engineered valve leaflets and native aortic valve leaflets. Fibrin-based valve equivalent (VE) and porcine aortic valve (PAV) leaflets were subjected to incremental biaxial stress relaxation testing, during which fiber alignments were measured, over a range of strain ratios. Results showed that VE leaflets exhibited a modulus and fiber reorientation behavior that correlated with strain ratio. In contrast, PAV leaflets maintained their relaxed modulus and fiber alignment when exposed to nonequibiaxial strain, but exhibited changes in stress relaxation. In uniaxial and equi-biaxial tension, there were few observed differences in relaxation behavior between VE and PAV leaflets, despite differences in the modulus and fiber reorientation. Likewise, in both tissues there was similar relaxation response in the circumferential and radial directions in biaxial tension, despite different moduli in these two directions. This study presents some fundamental differences in the mechanical response to biaxial tension of fibrin-based tissue-engineered constructs and native valve tissue. It also highlights the importance of using a range of strain ratios when generating mechanical property data for valvular and engineered tissues. The data presented on the stress-strain, relaxation, and fiber reorientation of VE tissue will be useful in future efforts to mathematically model and improve fibrin-based tissue-engineered constructs.
AB - To design more effective tissue-engineered heart valve replacements, the replacement tissue may need to mimic the biaxial stress-strain behavior of native heart valve tissue. This study characterized the planar biaxial properties of tissue-engineered valve leaflets and native aortic valve leaflets. Fibrin-based valve equivalent (VE) and porcine aortic valve (PAV) leaflets were subjected to incremental biaxial stress relaxation testing, during which fiber alignments were measured, over a range of strain ratios. Results showed that VE leaflets exhibited a modulus and fiber reorientation behavior that correlated with strain ratio. In contrast, PAV leaflets maintained their relaxed modulus and fiber alignment when exposed to nonequibiaxial strain, but exhibited changes in stress relaxation. In uniaxial and equi-biaxial tension, there were few observed differences in relaxation behavior between VE and PAV leaflets, despite differences in the modulus and fiber reorientation. Likewise, in both tissues there was similar relaxation response in the circumferential and radial directions in biaxial tension, despite different moduli in these two directions. This study presents some fundamental differences in the mechanical response to biaxial tension of fibrin-based tissue-engineered constructs and native valve tissue. It also highlights the importance of using a range of strain ratios when generating mechanical property data for valvular and engineered tissues. The data presented on the stress-strain, relaxation, and fiber reorientation of VE tissue will be useful in future efforts to mathematically model and improve fibrin-based tissue-engineered constructs.
UR - http://www.scopus.com/inward/record.url?scp=73349090293&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=73349090293&partnerID=8YFLogxK
U2 - 10.1089/ten.tea.2008.0426
DO - 10.1089/ten.tea.2008.0426
M3 - Article
C2 - 19368523
AN - SCOPUS:73349090293
SN - 1937-3341
VL - 15
SP - 2763
EP - 2772
JO - Tissue Engineering - Part A
JF - Tissue Engineering - Part A
IS - 10
ER -