TY - JOUR
T1 - PKMζ, a Brain-specific PKCζ Isoform, is Required for Glycolysis and Myofibroblastic Activation of Hepatic Stellate Cells
AU - Wang, Xianghu
AU - Wang, Yuanguo
AU - Bai, Bing
AU - Shaha, Aurpita
AU - Bao, Wenming
AU - He, Lianping
AU - Wang, Tian
AU - Kitange, Gaspar J.
AU - Kang, Ningling
N1 - Publisher Copyright:
© 2024 The Authors
PY - 2025/1
Y1 - 2025/1
N2 - Background & Aims: Transforming growth factor (TGF)β1 induces plasma membrane (PM) accumulation of glucose transporter 1 (Glut1) required for glycolysis of hepatic stellate cells (HSCs) and HSC activation. This study aimed to understand how Glut1 is anchored/docked onto the PM of HSCs. Methods: HSC expression of protein kinase M zeta isoform (PKMζ) was detected by reverse transcription polymerase chain reaction (RT-PCR), Western blotting, and immunofluorescence. PKMζ level was manipulated by short hairpin RNA (shRNA) or overexpression; HSC activation was assessed by cell expression of activation markers; PM Glut1, glucose uptake, and glycolysis of HSCs were analyzed by biotinylation, 2-NBDG-based assay, and Seahorse Glycolysis Stress Test. Phospho-mutants of vasodilator-stimulated phosphorylated protein (VASP) were created by site-directed mutagenesis. TGFβ transcriptome was obtained by RNA sequencing. Single-cell RNA sequencing datasets and immunofluorescence were leveraged to analyze PKMζ expression in cancer-associated fibroblasts (CAFs) of colorectal liver metastases. Function of HSC PKMζ was determined by tumor/HSC co-implantation study. Results: Primary human and murine HSCs express PKMζ, but not full-length PKCζ. PKMζ knockdown suppresses, whereas PKMζ overexpression potentiates PM accumulation of Glut1, glycolysis, and HSC activation induced by TGFβ1. Mechanistically, PKMζ binds to and induces VASP phosphorylation at serines 157 and 239 facilitating anchoring/docking of Glut1 onto the PM of HSCs. PKMζ expression is increased in the CAFs of murine and patient colorectal liver metastases compared with quiescent HSCs. Targeting PKMζ suppresses transcriptome, CAF activation of HSCs, and colorectal tumor growth in mice. Conclusions: Because HSCs are also a major contributor of liver fibrosis, our data highlight PKMζ and VASP as targets to inhibit metabolic reprogramming, HSC activation, liver fibrosis, and the pro-metastatic microenvironment of the liver.
AB - Background & Aims: Transforming growth factor (TGF)β1 induces plasma membrane (PM) accumulation of glucose transporter 1 (Glut1) required for glycolysis of hepatic stellate cells (HSCs) and HSC activation. This study aimed to understand how Glut1 is anchored/docked onto the PM of HSCs. Methods: HSC expression of protein kinase M zeta isoform (PKMζ) was detected by reverse transcription polymerase chain reaction (RT-PCR), Western blotting, and immunofluorescence. PKMζ level was manipulated by short hairpin RNA (shRNA) or overexpression; HSC activation was assessed by cell expression of activation markers; PM Glut1, glucose uptake, and glycolysis of HSCs were analyzed by biotinylation, 2-NBDG-based assay, and Seahorse Glycolysis Stress Test. Phospho-mutants of vasodilator-stimulated phosphorylated protein (VASP) were created by site-directed mutagenesis. TGFβ transcriptome was obtained by RNA sequencing. Single-cell RNA sequencing datasets and immunofluorescence were leveraged to analyze PKMζ expression in cancer-associated fibroblasts (CAFs) of colorectal liver metastases. Function of HSC PKMζ was determined by tumor/HSC co-implantation study. Results: Primary human and murine HSCs express PKMζ, but not full-length PKCζ. PKMζ knockdown suppresses, whereas PKMζ overexpression potentiates PM accumulation of Glut1, glycolysis, and HSC activation induced by TGFβ1. Mechanistically, PKMζ binds to and induces VASP phosphorylation at serines 157 and 239 facilitating anchoring/docking of Glut1 onto the PM of HSCs. PKMζ expression is increased in the CAFs of murine and patient colorectal liver metastases compared with quiescent HSCs. Targeting PKMζ suppresses transcriptome, CAF activation of HSCs, and colorectal tumor growth in mice. Conclusions: Because HSCs are also a major contributor of liver fibrosis, our data highlight PKMζ and VASP as targets to inhibit metabolic reprogramming, HSC activation, liver fibrosis, and the pro-metastatic microenvironment of the liver.
KW - Cancer-associated Fibroblasts
KW - Colorectal Liver Metastasis
KW - Gene Set Enrichment Analysis
KW - Protein Trafficking
KW - Sphingosine-1-phosphate
UR - http://www.scopus.com/inward/record.url?scp=85213496489&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85213496489&partnerID=8YFLogxK
U2 - 10.1016/j.jcmgh.2024.101429
DO - 10.1016/j.jcmgh.2024.101429
M3 - Article
C2 - 39542399
AN - SCOPUS:85213496489
SN - 2352-345X
VL - 19
JO - CMGH
JF - CMGH
IS - 3
M1 - 101429
ER -