Pi Bonding and Negative Hyperconjugation in Mono-, Di-, and Triaminoborane, -alane, -gallane, and -indane

Bethany L. Kormos, Chris Cramer

Research output: Contribution to journalArticlepeer-review

22 Scopus citations


A systematic quantum chemical investigation of mono-, di-, and triaminoborane, -alane, -gallane, and -indane is carried out to determine quantitatively the effects of pi bonding and negative hyperconjugation on structures, energetics, and rotational barriers in these systems. Pi bonding plays a significant role in the aminoborane compounds, but becomes rapidly less significant in the aminoalanes, -gallanes, and -indanes. For each main-group metal X investigated, X-N rotational barriers are found to be essentially equal depending only on the number of remaining in-plane amino groups. The contribution of negative hyperconjugation to reducing rotational barriers, as assessed from natural bond orbital (NBO) delocalization energies, is independent of the pyramidalization of the out-of-plane amino group, and is also dependent only on the number of rotated groups. Optimized tris[bis(trimethylsilyl)amino]-substituted structures of boron, aluminum, gallium, and indium are found to compare quite well with available experimental structural data, and exhibit X-N torsion angles that are independent of the central metal atom.

Original languageEnglish (US)
Pages (from-to)6691-6700
Number of pages10
JournalInorganic Chemistry
Issue number21
StatePublished - Oct 20 2003


Dive into the research topics of 'Pi Bonding and Negative Hyperconjugation in Mono-, Di-, and Triaminoborane, -alane, -gallane, and -indane'. Together they form a unique fingerprint.

Cite this