Photoaffinity antigens for human gammadelta T cells.

Ghanashyam Sarikonda, Hong Wang, Kia Joo Puan, Xiao hui Liu, Hoi K. Lee, Yongcheng Song, Mark D. Distefano, Eric Oldfield, Glenn D. Prestwich, Craig T. Morita

Research output: Contribution to journalArticlepeer-review

Abstract

Vgamma2Vdelta2 T cells comprise the major subset of peripheral blood gammadelta T cells in humans and expand during infections by recognizing small nonpeptide prenyl pyrophosphates. These molecules include (E)-4-hydroxy-3-methyl-but-2-enyl-pyrophosphate (HMBPP), a microbial isoprenoid intermediate, and isopentenyl pyrophosphate, an endogenous isoprenoid intermediate. Recognition of these nonpeptide Ags is mediated by the Vgamma2Vdelta2 T cell Ag receptor. Several findings suggest that prenyl pyrophosphates are presented by an Ag-presenting molecule: contact between T cells and APC is required, the Ags do not bind the Vgamma2Vdelta2 TCR directly, and Ag recognition is abrogated by TCR mutations in CDRs distant from the putative Ag recognition site. Identification of the putative Ag-presenting molecule, however, has been hindered by the inability to achieve stable association of nonpeptide prenyl pyrophosphate Ags with the presenting molecule. In this study, we show that photoaffinity analogues of HMBPP, meta/para-benzophenone-(methylene)-prenyl pyrophosphates (m/p-BZ-(C)-C(5)-OPP), can crosslink to the surface of tumor cell lines and be presented as Ags to gammadelta T cells. Mutant tumor cell lines lacking MHC class I, MHC class II, beta(2)-microglobulin, and CD1, as well as tumor cell lines from a variety of tissues and individuals, will all crosslink to and present m-BZ-C(5)-OPP. Finally, pulsing of BZ-(C)-C(5)-OPP is inhibited by isopentenyl pyrophosphate and an inactive analog, suggesting that they bind to the same molecule. Taken together, these results suggest that nonpeptide Ags are presented by a novel-Ag-presenting molecule that is widely distributed and nonpolymorphic, but not classical MHC class I, MHC class II, or CD1.

Original languageEnglish (US)
Pages (from-to)7738-7750
Number of pages13
JournalJournal of immunology (Baltimore, Md. : 1950)
Volume181
Issue number11
StatePublished - Dec 1 2008

Fingerprint

Dive into the research topics of 'Photoaffinity antigens for human gammadelta T cells.'. Together they form a unique fingerprint.

Cite this