Phonon-mediated superconductivity in low carrier-density systems

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Motivated by the observation of superconductivity in SrTiO3 and Bi, we analyze phonon-mediated superconductivity in three-dimensional systems at low carrier density, when the chemical potential μ is comparable to or even smaller than the characteristic phonon frequency ωL. We consider the attractive part of the Bardeen-Pines pairing interaction, in which the frequency-dependent electron-phonon interaction is dressed by the Coulomb potential. This dressing endows the pairing interaction with momentum dependence. We argue that the conventional Migdal-Eliashberg approximation becomes invalid when μ≤ωL, chiefly because the dominant contribution to pairing comes from electronic states away from the Fermi surface. We obtain the pairing onset temperature, which is equal to Tc in the absence of phase fluctuations, as a function of μ/ωL. We find both analytically and numerically that Tc increases as the ratio μ/ωL becomes smaller. In particular, in the dilute regime, μ→0, it holds that TcωL(RyωL)η, where Ry is the Rydberg constant and η∼0.2.

Original languageEnglish (US)
Article number094524
JournalPhysical Review B
Volume99
Issue number9
DOIs
StatePublished - Mar 29 2019

Bibliographical note

Funding Information:
We thank K. Behnia, G. Lonzarich, D. L. Maslov, A. Aperis, and A. Millis for fruitful discussions. This work was supported by the U. S. Department of Energy through the University of Minnesota Center for Quantum Materials, under Award No. DE-SC-0016371.

Funding Information:
This work was supported by the U. S. Department of Energy through the University of Minnesota Center for Quantum Materials, under Award No. DE-SC-0016371.

Publisher Copyright:
© 2019 American Physical Society.

Fingerprint Dive into the research topics of 'Phonon-mediated superconductivity in low carrier-density systems'. Together they form a unique fingerprint.

Cite this