Phenotypic and transcriptomic changes associated with potato autopolyploidization

Robert M. Stupar, Pudota B. Bhaskar, Brian S. Yandell, Willem A. Rensink, Amy L. Hart, Shu Ouyang, Richard E. Veilleux, James S. Busse, Robert J. Erhardt, C. Robin Buell, Jiming Jiang

Research output: Contribution to journalArticlepeer-review

195 Scopus citations

Abstract

Polyploidy is remarkably common in the plant kingdom and polyploidization is a major driving force for plant genome evolution. Polyploids may contain genomes from different parental species (allopolyploidy) or include multiple sets of the same genome (autopolyploidy). Genetic and epigenetic changes associated with allopolyploidization have been a major research subject in recent years. However, we know little about the genetic impact imposed by autopolyploidization. We developed a synthetic autopolyploid series in potato (Solanum phureja) that includes one monoploid (1x) clone, two diploid (2x) clones, and one tetraploid (4x) clone. Cell size and organ thickness were positively correlated with the ploidy level. However, the 2x plants were generally the most vigorous and the 1x plants exhibited less vigor compared to the 2x and 4x individuals. We analyzed the transcriptomic variation associated with this autopolyploid series using a potato cDNA microarray containing ∼9000 genes. Statistically significant expression changes were observed among the ploidies for ∼10% of the genes in both leaflet and root tip tissues. However, most changes were associated with the monoploid and were within the twofold level. Thus, alteration of ploidy caused subtle expression changes of a substantial percentage of genes in the potato genome. We demonstrated that there are few genes, if any, whose expression is linearly correlated with the ploidy and can be dramatically changed because of ploidy alteration.

Original languageEnglish (US)
Pages (from-to)2055-2067
Number of pages13
JournalGenetics
Volume176
Issue number4
DOIs
StatePublished - Aug 2007

Fingerprint

Dive into the research topics of 'Phenotypic and transcriptomic changes associated with potato autopolyploidization'. Together they form a unique fingerprint.

Cite this