Abstract
Mesoporous silica and carbon materials have been successfully synthesized via a novel calcination induced phase separation of organic/inorganic hybrids prepared from solvothermal polymerization of polyvinyl alcohol (PVA) and tetraethyl orthosilicate (TEOS) in dimethyl sulfoxide (DMSO). Combined characterizations of XRD, nitrogen isotherms, and TEM techniques show that the samples have worm-like mesostructures with uniform pore size distributions and large BET surface areas 1H NMR spectra reveal that ethanol was generated after the solvothermal treatments, indicating the polymerization of PVA and TEOS. Open mesopores of the desired silicas or carbons could be fabricated by calcining the hybrids in air and nitrogen, respectively. This route might open a new methodology to synthesize mesoporous materials.
Original language | English (US) |
---|---|
Pages (from-to) | 257-261 |
Number of pages | 5 |
Journal | Journal of Colloid And Interface Science |
Volume | 345 |
Issue number | 2 |
DOIs | |
State | Published - May 2010 |
Keywords
- Calcination
- Mesoporous carbon
- Mesoporous silica
- Non-aqueous synthesis
- Organic/inorganic hybrids
- Phase separation