Phase-sensitive optical low-coherence reflectometry for the detection of analyte concentrations

Kirill V. Larin, Taner Akkin, Rinat O. Esenaliev, Massoud Motamedi, Thomas E. Milner

Research output: Contribution to journalArticlepeer-review

54 Scopus citations


Optical techniques may potentially be used for noninvasive glucose sensing. We investigated the application of phase-sensitive optical low-coherence reflectometry (PS-OLCR) to the measurement of analyte concentrations. The dependence of the PS-OLCR signal on the concentration of various analytes, including aqueous solutions of glucose, calcium chloride, magnesium chloride, sodium chloride, potassium chloride, potassium bicarbonate, urea, bovine serum albumin, and bovine globulin, were determined in clear and turbid media. Obtained results demonstrated (1) a high degree of sensitivity and accuracy of the phase measurements of analyte concentrations with PS-OLCR; (2) a concentration-dependent change in the phase-shift for glucose that is significantly greater than that of other analytes sampled over the same physiological range; and (3) a high submillimolar sensitivity of PS-OLCR for the measurement of glucose concentration. Further exploration of the application of PS-OLCR to the noninvasive, sensitive, and specific monitoring of glucose concentration seems warranted.

Original languageEnglish (US)
Pages (from-to)3408-3414
Number of pages7
JournalApplied Optics
Issue number17
StatePublished - Jun 10 2004


Dive into the research topics of 'Phase-sensitive optical low-coherence reflectometry for the detection of analyte concentrations'. Together they form a unique fingerprint.

Cite this