TY - JOUR
T1 - Phase I dose escalation and pharmacokinetic study of AZD2171, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinase, in patients with hormone refractory prostate cancer (HRPC)
AU - Ryan, Charles J.
AU - Stadler, Walter M.
AU - Roth, Bruce
AU - Hutcheon, Douglass
AU - Conry, Shauna
AU - Puchalski, Thomas
AU - Morris, Charles
AU - Small, Eric J.
PY - 2007/10
Y1 - 2007/10
N2 - To explore the pharmacokinetics and tolerability of AZD2171, an inhibitor of vascular endothelial growth factor receptors 1 and 2, in patients with hormone refractory prostate cancer. Twenty-six patients received oral daily dosing of AZD2171 at 1, 2.5, 5, 10, 20, 30 mg. The maximum tolerated dose (MTD) was defined as the dose below that at which ≥33% of patients experienced a dose-limiting toxicity (DLT) within 21 days of initiating therapy. Pharmacokinetic analysis was performed. DLTs occurred at the 30 mg dose and included grade 3 events in three patients: fatigue (n = 3) and muscle weakness (n = 2). The pharmacokinetic profile revealed an effective half-life of approximately 27 h. At steady state, the unbound drug concentration was 4.4 times above the concentration required to inhibit endothelial cell proliferation in vitro. Four patients experienced PSA reductions within 30 days following drug discontinuation (one on 2.5 mg, two on 20 mg and 1 on 30 mg). In two patients treated with 20 mg, post therapy PSA declines persisted for >17 months, despite a PSA increase on therapy. Resolution of adenopathy occurred in one patient persisting for >17 months. Plasma concentrations were maximum 2-8 h post dosing with an overall median value of 2 h. The dose of 20 mg daily was declared as the MTD. One objective response and several PSA declines following the discontinuation of therapy for toxicity suggest that evidence of clinical efficacy may be delayed. While further study is indicated, careful attention must be paid to the novel toxicities of this agent with prolonged dosing.
AB - To explore the pharmacokinetics and tolerability of AZD2171, an inhibitor of vascular endothelial growth factor receptors 1 and 2, in patients with hormone refractory prostate cancer. Twenty-six patients received oral daily dosing of AZD2171 at 1, 2.5, 5, 10, 20, 30 mg. The maximum tolerated dose (MTD) was defined as the dose below that at which ≥33% of patients experienced a dose-limiting toxicity (DLT) within 21 days of initiating therapy. Pharmacokinetic analysis was performed. DLTs occurred at the 30 mg dose and included grade 3 events in three patients: fatigue (n = 3) and muscle weakness (n = 2). The pharmacokinetic profile revealed an effective half-life of approximately 27 h. At steady state, the unbound drug concentration was 4.4 times above the concentration required to inhibit endothelial cell proliferation in vitro. Four patients experienced PSA reductions within 30 days following drug discontinuation (one on 2.5 mg, two on 20 mg and 1 on 30 mg). In two patients treated with 20 mg, post therapy PSA declines persisted for >17 months, despite a PSA increase on therapy. Resolution of adenopathy occurred in one patient persisting for >17 months. Plasma concentrations were maximum 2-8 h post dosing with an overall median value of 2 h. The dose of 20 mg daily was declared as the MTD. One objective response and several PSA declines following the discontinuation of therapy for toxicity suggest that evidence of clinical efficacy may be delayed. While further study is indicated, careful attention must be paid to the novel toxicities of this agent with prolonged dosing.
KW - Angiogenesis inhibitors
KW - Hormone refractory prostate cancer
KW - Pharmacokinetics
KW - Prostate cancer
UR - http://www.scopus.com/inward/record.url?scp=34547654541&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34547654541&partnerID=8YFLogxK
U2 - 10.1007/s10637-007-9050-y
DO - 10.1007/s10637-007-9050-y
M3 - Article
C2 - 17458505
AN - SCOPUS:34547654541
SN - 0167-6997
VL - 25
SP - 445
EP - 451
JO - Investigational New Drugs
JF - Investigational New Drugs
IS - 5
ER -