Perpendicular magnetic anisotropy via strain-engineered oxygen vacancy ordering in epitaxial L a1-x S rxCo O 3

Jeff Walter, Shameek Bose, Mariona Cabero, Guichuan Yu, Martin Greven, Maria Varela, Chris Leighton

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

Tuning oxygen vacancy concentrations is a well-established approach to controlling properties of complex oxides. Recent work on perovskite cobaltites has shown that ordering of oxygen vacancies can also be tuned, via heteroepitaxial strain, presenting new opportunities. Here we demonstrate that strain-engineered vacancy ordering can control and enhance magnetic anisotropy in La1-xSrxCoO3-δ. In particular, in-plane oxygen vacancy order induced by compressive strain is shown to result in remarkably strong perpendicular magnetic anisotropy, with anisotropy constant up to 6×106erg/cm3. The anisotropy is thickness independent, ruling out surface and film/substrate interface anisotropy, but strongly correlated with lateral coherence of defect order from electron microscopy. The results are discussed in terms of the unit-cell-level superlattice induced by the oxygen vacancy order, generating intriguing analogies with metal-based multilayer systems. Generally, this Rapid Communication highlights the significant potential of strain-based manipulation of oxygen vacancy ordering to control and enhance complex oxide properties.

Original languageEnglish (US)
Article number111404
JournalPhysical Review Materials
Volume2
Issue number11
DOIs
StatePublished - Nov 19 2018

How much support was provided by MRSEC?

  • Shared

Reporting period for MRSEC

  • Period 5

Fingerprint Dive into the research topics of 'Perpendicular magnetic anisotropy via strain-engineered oxygen vacancy ordering in epitaxial L a1-x S rxCo O <sub>3</sub> -δ'. Together they form a unique fingerprint.

Cite this