Performance of Low-Complexity Spectrally Selective One-Dimensional Mirrors for Photovoltaic Thermal Management

Ian M. Slauch, Michael G. Deceglie, Timothy J. Silverman, Vivian E Ferry

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

Operation at elevated temperatures is detrimental to the performance of crystalline Si solar modules. One method of reducing module operating temperature is selective reflection of sub-bandgap photons, which can otherwise only be absorbed parasitically. We numerically optimize the design of a series of multilayer photonic mirrors based on real materials using a previously developed optimization routine. Combined ray tracing and finite element simulations reveal the ability of each mirror to increase energy yield and decrease operating temperature. The best design outperforms a conventional glass antireflection coating, contains only nine layers, and maintains performance regardless of geographic location.

Original languageEnglish (US)
Title of host publication2018 IEEE 7th World Conference on Photovoltaic Energy Conversion, WCPEC 2018 - A Joint Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2933-2938
Number of pages6
ISBN (Electronic)9781538685297
DOIs
StatePublished - Nov 26 2018
Event7th IEEE World Conference on Photovoltaic Energy Conversion, WCPEC 2018 - Waikoloa Village, United States
Duration: Jun 10 2018Jun 15 2018

Publication series

Name2018 IEEE 7th World Conference on Photovoltaic Energy Conversion, WCPEC 2018 - A Joint Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC

Other

Other7th IEEE World Conference on Photovoltaic Energy Conversion, WCPEC 2018
CountryUnited States
CityWaikoloa Village
Period6/10/186/15/18

Bibliographical note

Funding Information:
We thank Dana Dement for assistance with spectroscopic ellipsometry. Part of this work was carried out in the College of Science and Engineering Characterization Facility, University of Minnesota, which has received capital equipment funding from the NSF through the UMN MRSEC program under Award Number DMR-1420013. Part of this work was carried out in the College of Science and Engineering Minnesota Nano Center, University of Minnesota, which receives partial support from NSF through the NNIN program.

Funding Information:
This work was authored in part by Alliance for Sustainable Energy, LLC, the manager and operator of the National Renewable Energy Laboratory for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under Solar Energy Technologies Office (SETO) Agreement Number 30312. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Publisher Copyright:
© 2018 IEEE.

Keywords

  • cooling
  • photonic structures
  • solar cells
  • solar modules
  • spectrally selective reflection

How much support was provided by MRSEC?

  • Shared

Reporting period for MRSEC

  • Period 5

Fingerprint Dive into the research topics of 'Performance of Low-Complexity Spectrally Selective One-Dimensional Mirrors for Photovoltaic Thermal Management'. Together they form a unique fingerprint.

Cite this