Performance of a Small-Scale Haber Process

Michael H Reese, Cory Marquart, Mohammadmahdi Malmali, Kevin Wagner, Eric S Buchanan, Alon V McCormick, Edward L. Cussler

Research output: Contribution to journalArticlepeer-review

83 Scopus citations


This work identifies a benchmark for the performance of a small-scale ammonia synthesis plant powered by wind energy. The energy used is stranded, far from urban centers but near locations of fertilizer demand. The wind energy drives the pressure swing absorption of air to make nitrogen and the electrolysis of water to make hydrogen. These are combined in the small-scale continuous Haber process to synthesize ammonia. The analysis of runs of the small plant presented in this article permits an assessment of how the current production rate is controlled by three resistances: catalytic reaction, ammonia separation by condensation, and recycling of unreacted gas. The measured catalytic reaction rates are consistent with separate experiments on chemical kinetics and with published reaction mechanisms. The condensation rates predicted are comparable with literature correlations. These rate constants now supply a rigorous strategy for optimizing this scaled-down, distributed ammonia plant. Moreover, this method of analysis is recommended for future small-scale, distributed manufacturing plants.

Original languageEnglish (US)
Pages (from-to)3742-3750
Number of pages9
JournalIndustrial and Engineering Chemistry Research
Issue number13
StatePublished - Apr 20 2016

Bibliographical note

Funding Information:
This work was primarily supported by MNDrive, an initiative of the University of Minnesota; and by the Minnesota Environment and Natural Resources Trust Fund as recommended by the Legislative-Citizen Commission on Minnesota Resources (LCCMR). Additional support came from the Dow Chemical Company, Midland, MI. The Wind Power (2014) map was created by the National Renewable Energy Laboratory for the U.S. Department of Energy with data provided by AWS TruePower.

Publisher Copyright:
© 2016 American Chemical Society.

Copyright 2016 Elsevier B.V., All rights reserved.


Dive into the research topics of 'Performance of a Small-Scale Haber Process'. Together they form a unique fingerprint.

Cite this