Pedestrian Injury Severity vs. Vehicle Impact Speed: Uncertainty Quantification and Calibration to Local Conditions

Gary A. Davis, Christopher Cheong

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

This paper describes a method for fitting predictive models that relate vehicle impact speeds to pedestrian injuries, in which results from a national sample are calibrated to reflect local injury statistics. Three methodological issues identified in the literature, outcome-based sampling, uncertainty regarding estimated impact speeds, and uncertainty quantification, are addressed by (i) implementing Bayesian inference using Markov Chain Monte Carlo sampling and (ii) applying multiple imputation to conditional maximum likelihood estimation. The methods are illustrated using crash data from the NHTSA Pedestrian Crash Data Study coupled with an exogenous sample of pedestrian crashes from Minnesota’s Twin Cities. The two approaches produced similar results and, given a reliable characterization of impact speed uncertainty, either approach can be applied in a jurisdiction having an exogenous sample of pedestrian crash severities.

Original languageEnglish (US)
Pages (from-to)583-592
Number of pages10
JournalTransportation Research Record
Volume2673
Issue number11
DOIs
StatePublished - Nov 2019

Bibliographical note

Publisher Copyright:
© National Academy of Sciences: Transportation Research Board 2019.

Fingerprint

Dive into the research topics of 'Pedestrian Injury Severity vs. Vehicle Impact Speed: Uncertainty Quantification and Calibration to Local Conditions'. Together they form a unique fingerprint.

Cite this