## Abstract

This paper introduces a new component based model that makes it relatively simple to prove that certain types of landscapes are elementary. We use the model to reconstruct proofs for the Traveling Salesman Problem, Graph Coloring and Min-Cut Graph Partitioning. The same model is then used to efficiently compute the average values over particular partial neighborhoods for these same problems. For Graph Coloring and Min-Cut Graph Partitioning, this computation can be used to focus search on those moves that are most likely to yield an improving move, ignoring moves that cannot yield an improving move. Let x be a candidate solution with objective function value f(x). The mean value of the objective function over the entire landscape is denoted f. Normally in an elementary landscape one can only be sure that a neighborhood includes an improving move (assuming minimization) if f(x) > f. However, by computing the expected value of an appropriate partial neighborhood it is sometimes possible to know that an improving move exists in the partial neighborhood even when f(x) f.

Original language | English (US) |
---|---|

Title of host publication | Proceedings of the 11th Annual Genetic and Evolutionary Computation Conference, GECCO-2009 |

Pages | 381-388 |

Number of pages | 8 |

DOIs | |

State | Published - Dec 31 2009 |

Event | 11th Annual Genetic and Evolutionary Computation Conference, GECCO-2009 - Montreal, QC, Canada Duration: Jul 8 2009 → Jul 12 2009 |

### Other

Other | 11th Annual Genetic and Evolutionary Computation Conference, GECCO-2009 |
---|---|

Country | Canada |

City | Montreal, QC |

Period | 7/8/09 → 7/12/09 |

## Keywords

- Elementary landscapes
- Fitness landscapes