Projects per year
Abstract
Combined quantum mechanical and molecular mechanical (QM/MM) methods are the most powerful available methods for high-level treatments of subsystems of very large systems. The treatment of the QM−MM boundary strongly affects the accuracy of QM/MM calculations. For QM/MM calculations having covalent bonds cut by the QM−MM boundary, it has been proposed previously to use a scheme with system-specific tuned fluorine link atoms. Here, we propose a broadly parametrized scheme where the parameters of the tuned F link atoms depend only on the type of bond being cut. In the proposed new scheme, the F link atom is tuned for systems with a certain type of cut bond at the QM−MM boundary instead of for a specific target system, and the resulting link atoms are call bond-tuned link atoms. In principle, the bond-tuned link atoms can be as convenient as the popular H link atoms, and they are especially well adapted for high-throughput and accurate QM/MM calculations. Here, we present the parameters for several kinds of cut bonds along with a set of validation calculations that confirm that the proposed bond-tuned link-atom scheme can be as accurate as the system-specific tuned F link-atom scheme.
Original language | English (US) |
---|---|
Article number | 1309 |
Journal | Molecules |
Volume | 23 |
Issue number | 6 |
DOIs | |
State | Published - 2018 |
Bibliographical note
Publisher Copyright:© 2018 by the authors.
Keywords
- Electrostatics
- Molecular modeling
- Multiscale modeling
- QM/MM
Fingerprint
Dive into the research topics of 'Parametrization of combined quantum mechanical and molecular mechanical methods: bond-tuned link atoms †'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Energy Frontier Research Center For Inorganometallic Catalyst Design (DE-SC0012702)
Gagliardi, L. (PI), Cramer, C. (CoI), Lu, C. C. (CoI), Penn, L. (CoI), Stein, A. (CoI) & Truhlar, D. G. (CoI)
U.S. DEPARTMENT OF ENERGY (USDOE)
8/1/14 → 7/31/18
Project: Research project