Parametric 1-D Modeling Study of a 5-Stroke Spark-Ignition Engine Concept for Increasing Engine Thermal Efficiency

Research output: Contribution to conferencePaper

3 Citations (Scopus)

Abstract

In recent years, there has been growing interest in alternative cycles to the standard 4-stroke Otto engine for improving efficiency and lowering emissions of spark-ignition engines. One proposed concept is the 5-stroke engine which uses two types of cylinders, a combustion cylinder and an expansion cylinder with a transfer port between them. Excess pressure in the combustion cylinder can be further expanded by using a second expansion cylinder to harness additional work. The expansion cylinder runs on a two-stroke cycle, allowing the use of two combustion cylinders to one expansion cylinder in a three cylinder configuration to increase efficiency. Previous work has investigated the performance of prototype 5-stroke engines compared to 1-D modeling results; none have conducted a thorough study on the interactions of various design parameters. In this paper, we explore the results of a 1-D parametric modeling study to examine the effect of various parameters such as bore, stroke, valve lift profiles, and compression ratio on engine brake thermal efficiencies of a three cylinder 5-stroke engine. Over the range of values examined our work indicates that an expansion cylinder bore to stoke ratio of 1.4 and expansion ratio 17.5 produces maximum brake thermal efficiency. The intake, transfer, and exhaust lift profiles have a strong effect on brake thermal efficiency with valve opening and closing points playing a key role. Additionally reducing the offset between the combustion and expansion cylinder improves the timing of the transfer process leading to improved brake thermal efficiency. Lastly the transfer volume between the combustion and expansion cylinder has minimal effect on the brake thermal efficiency.

Original languageEnglish (US)
DOIs
StatePublished - Apr 14 2015
EventSAE 2015 World Congress and Exhibition - Detroit, United States
Duration: Apr 21 2015Apr 23 2015

Other

OtherSAE 2015 World Congress and Exhibition
CountryUnited States
CityDetroit
Period4/21/154/23/15

Fingerprint

Engine cylinders
Internal combustion engines
Engines
Brakes
Hot Temperature
Cylinder configurations
Compression ratio (machinery)
Plant expansion
Plant shutdowns

Cite this

Parametric 1-D Modeling Study of a 5-Stroke Spark-Ignition Engine Concept for Increasing Engine Thermal Efficiency. / Melin, Alex; Kittelson, David B; Northrop, William.

2015. Paper presented at SAE 2015 World Congress and Exhibition, Detroit, United States.

Research output: Contribution to conferencePaper

Melin, A, Kittelson, DB & Northrop, W 2015, 'Parametric 1-D Modeling Study of a 5-Stroke Spark-Ignition Engine Concept for Increasing Engine Thermal Efficiency' Paper presented at SAE 2015 World Congress and Exhibition, Detroit, United States, 4/21/15 - 4/23/15, . https://doi.org/10.4271/2015-01-1752
@conference{4a2aad2f350743d88736e24faba76b38,
title = "Parametric 1-D Modeling Study of a 5-Stroke Spark-Ignition Engine Concept for Increasing Engine Thermal Efficiency",
abstract = "In recent years, there has been growing interest in alternative cycles to the standard 4-stroke Otto engine for improving efficiency and lowering emissions of spark-ignition engines. One proposed concept is the 5-stroke engine which uses two types of cylinders, a combustion cylinder and an expansion cylinder with a transfer port between them. Excess pressure in the combustion cylinder can be further expanded by using a second expansion cylinder to harness additional work. The expansion cylinder runs on a two-stroke cycle, allowing the use of two combustion cylinders to one expansion cylinder in a three cylinder configuration to increase efficiency. Previous work has investigated the performance of prototype 5-stroke engines compared to 1-D modeling results; none have conducted a thorough study on the interactions of various design parameters. In this paper, we explore the results of a 1-D parametric modeling study to examine the effect of various parameters such as bore, stroke, valve lift profiles, and compression ratio on engine brake thermal efficiencies of a three cylinder 5-stroke engine. Over the range of values examined our work indicates that an expansion cylinder bore to stoke ratio of 1.4 and expansion ratio 17.5 produces maximum brake thermal efficiency. The intake, transfer, and exhaust lift profiles have a strong effect on brake thermal efficiency with valve opening and closing points playing a key role. Additionally reducing the offset between the combustion and expansion cylinder improves the timing of the transfer process leading to improved brake thermal efficiency. Lastly the transfer volume between the combustion and expansion cylinder has minimal effect on the brake thermal efficiency.",
author = "Alex Melin and Kittelson, {David B} and William Northrop",
year = "2015",
month = "4",
day = "14",
doi = "10.4271/2015-01-1752",
language = "English (US)",
note = "SAE 2015 World Congress and Exhibition ; Conference date: 21-04-2015 Through 23-04-2015",

}

TY - CONF

T1 - Parametric 1-D Modeling Study of a 5-Stroke Spark-Ignition Engine Concept for Increasing Engine Thermal Efficiency

AU - Melin, Alex

AU - Kittelson, David B

AU - Northrop, William

PY - 2015/4/14

Y1 - 2015/4/14

N2 - In recent years, there has been growing interest in alternative cycles to the standard 4-stroke Otto engine for improving efficiency and lowering emissions of spark-ignition engines. One proposed concept is the 5-stroke engine which uses two types of cylinders, a combustion cylinder and an expansion cylinder with a transfer port between them. Excess pressure in the combustion cylinder can be further expanded by using a second expansion cylinder to harness additional work. The expansion cylinder runs on a two-stroke cycle, allowing the use of two combustion cylinders to one expansion cylinder in a three cylinder configuration to increase efficiency. Previous work has investigated the performance of prototype 5-stroke engines compared to 1-D modeling results; none have conducted a thorough study on the interactions of various design parameters. In this paper, we explore the results of a 1-D parametric modeling study to examine the effect of various parameters such as bore, stroke, valve lift profiles, and compression ratio on engine brake thermal efficiencies of a three cylinder 5-stroke engine. Over the range of values examined our work indicates that an expansion cylinder bore to stoke ratio of 1.4 and expansion ratio 17.5 produces maximum brake thermal efficiency. The intake, transfer, and exhaust lift profiles have a strong effect on brake thermal efficiency with valve opening and closing points playing a key role. Additionally reducing the offset between the combustion and expansion cylinder improves the timing of the transfer process leading to improved brake thermal efficiency. Lastly the transfer volume between the combustion and expansion cylinder has minimal effect on the brake thermal efficiency.

AB - In recent years, there has been growing interest in alternative cycles to the standard 4-stroke Otto engine for improving efficiency and lowering emissions of spark-ignition engines. One proposed concept is the 5-stroke engine which uses two types of cylinders, a combustion cylinder and an expansion cylinder with a transfer port between them. Excess pressure in the combustion cylinder can be further expanded by using a second expansion cylinder to harness additional work. The expansion cylinder runs on a two-stroke cycle, allowing the use of two combustion cylinders to one expansion cylinder in a three cylinder configuration to increase efficiency. Previous work has investigated the performance of prototype 5-stroke engines compared to 1-D modeling results; none have conducted a thorough study on the interactions of various design parameters. In this paper, we explore the results of a 1-D parametric modeling study to examine the effect of various parameters such as bore, stroke, valve lift profiles, and compression ratio on engine brake thermal efficiencies of a three cylinder 5-stroke engine. Over the range of values examined our work indicates that an expansion cylinder bore to stoke ratio of 1.4 and expansion ratio 17.5 produces maximum brake thermal efficiency. The intake, transfer, and exhaust lift profiles have a strong effect on brake thermal efficiency with valve opening and closing points playing a key role. Additionally reducing the offset between the combustion and expansion cylinder improves the timing of the transfer process leading to improved brake thermal efficiency. Lastly the transfer volume between the combustion and expansion cylinder has minimal effect on the brake thermal efficiency.

UR - http://www.scopus.com/inward/record.url?scp=84938326808&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84938326808&partnerID=8YFLogxK

U2 - 10.4271/2015-01-1752

DO - 10.4271/2015-01-1752

M3 - Paper

ER -