Parameter Estimation of Cyclostationary AM Time Series with Application to Missing Observations

Georgios B. Giannakis, Guotong Zhou

Research output: Contribution to journalArticlepeer-review

11 Scopus citations


Time series with systematic misses occur often in practice and can be modeled as amplitude modulated ARMA processes. With this as a motivating application, modeling of cyclostationary amplitude modulated time series is addressed in this paper. Assuming that the modulating sequence is (almost) periodic, parameter estimation algorithms are developed based on second- and higher order cumulants of the resulting cyclostationary observations, which may be corrupted by any additive stationary noise of unknown covariance. If unknown, the modulating sequence can be recovered even in the presence of additive (perhaps nonstationary and colored) Gaussian, or any symmetrically distributed, noise. If the ARMA process is nonGaussian, cyclic cumulants of order greater than three can identify (non)causal and (non)minimum phase models from partial noisy data. Simulation experiments corroborate the theoretical results.

Original languageEnglish (US)
Pages (from-to)2408-2419
Number of pages12
JournalIEEE Transactions on Signal Processing
Issue number9
StatePublished - Sep 1994

Bibliographical note

Funding Information:
Manuscript received May 28, 1993; revised January 3, 1994. This paper was presented at the Third ISSPA-HOSSPA Conference, Gold Coast, Australia, August 18-21, 1992. This work was supported by ONR Grant no. N00014-93-1-0485. The associate editor coordinating the review of this paper and approving it for publication was Prof. John Goutsias. The authors are with the Department of Electrical Engineering, University of Virginia, Charlottesville, VA 22903-2442 USA. IEEE Log Number 940327 1.


Dive into the research topics of 'Parameter Estimation of Cyclostationary AM Time Series with Application to Missing Observations'. Together they form a unique fingerprint.

Cite this