Abstract
To enhance the computational efficiency for the simulation of plasma assisted combustion (PAC) models, three new techniques, on-the-fly adaptive kinetics (OAK), point-implicit stiff ODE solver (ODEPIM), and correlated transport (CoTran), are combined together to generate a new simulation framework. This framework is applied to non-equilibrium plasma assisted oxidation of C2H4/O2/Ar mixtures in a low-temperature flow reactor. The new framework has been extensively verified by both temporal evolution and spatial distribution of several key species and gas temperature. Simulation results show that it accelerates the total CPU time by 3.16 times, accelerates the calculation of kinetics by 80 times, and accelerates the calculation of transport properties by 836 times. The high accuracy and performance of the new framework indicates that it has great application potentials to many different areas in the modeling and simulation of plasma assisted combustion.
Original language | English (US) |
---|---|
Title of host publication | 54th AIAA Aerospace Sciences Meeting |
Publisher | American Institute of Aeronautics and Astronautics Inc, AIAA |
ISBN (Print) | 9781624103933 |
DOIs | |
State | Published - 2016 |
Externally published | Yes |
Event | 54th AIAA Aerospace Sciences Meeting, 2016 - San Diego, United States Duration: Jan 4 2016 → Jan 8 2016 |
Publication series
Name | 54th AIAA Aerospace Sciences Meeting |
---|---|
Volume | 0 |
Other
Other | 54th AIAA Aerospace Sciences Meeting, 2016 |
---|---|
Country/Territory | United States |
City | San Diego |
Period | 1/4/16 → 1/8/16 |
Bibliographical note
Publisher Copyright:© 2016, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.