Parallel fully-implicit computation of magnetohydrodynamics acceleration experiments

Tian Wan, Graham Candler

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

A three-dimensional MHD solver is described in the paper. The solver simulates reacting flows with nonequilibrium between translational-rotational, vibrational and electron translational modes. The conservation equations are discretized with implicit time marching and the second-order modified Steger-Warming scheme, and the resulted linear system is solved iteratively with Newton-Krylov-Schwarz method that is implemented by PETSc package. The results of convergence tests are plotted, which show good scalability and convergence around twice faster when compared with the DPLR method. Then five test runs are conducted simulating the experiments done at the NASA Ames MHD channel, and the calculated pressures, temperatures, electrical conductivity, back EMF, load factors and flow accelerations are shown to agree with the experimental data. Our computation shows that the electrical conductivity distribution is not uniform in the powered section of the MHD channel, and that it is important to include Joule heating in order to calculate the correct conductivity and the MHD acceleration.

Original languageEnglish (US)
Title of host publicationISCM II and EPMESC XII - Proc. of the 2nd Int. Symposium on Computational Mechanics and the 12th Int. Conf. on the Enhancement and Promotion of Computational Methods in Engineering and Science
Pages1553-1558
Number of pages6
EditionPART 1
DOIs
StatePublished - 2010
Event2nd International Symposium on Computational Mechanics, ISCM II, and the 12th International Conference on the Enhancement and Promotion of Computational Methods in Engineering and Science, EPMESC XII - Hong Kong, Macau, China
Duration: Nov 30 2009Dec 3 2009

Publication series

NameAIP Conference Proceedings
NumberPART 1
Volume1233
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Other

Other2nd International Symposium on Computational Mechanics, ISCM II, and the 12th International Conference on the Enhancement and Promotion of Computational Methods in Engineering and Science, EPMESC XII
Country/TerritoryChina
CityHong Kong, Macau
Period11/30/0912/3/09

Keywords

  • Electron-temperature
  • Joule heating
  • fully-implicit method

Fingerprint

Dive into the research topics of 'Parallel fully-implicit computation of magnetohydrodynamics acceleration experiments'. Together they form a unique fingerprint.

Cite this