Pairing Mechanism in Hund's Metal Superconductors and the Universality of the Superconducting Gap to Critical Temperature Ratio

Tsung Han Lee, Andrey Chubukov, Hu Miao, Gabriel Kotliar

Research output: Contribution to journalArticlepeer-review

27 Scopus citations

Abstract

We analyze a simple model containing the physical ingredients of a Hund's metal, the local spin fluctuations with power-law correlators, (Ω0/|Ω|)γ, with γ greater than one, interacting with electronic quasiparticles. While the critical temperature and the gap change significantly with varying parameters, the 2Δmax/kBTc remains close to twice the BCS value in agreement with experimental observations in the iron-based superconductors (FeSC).

Original languageEnglish (US)
Article number187003
JournalPhysical review letters
Volume121
Issue number18
DOIs
StatePublished - Nov 1 2018

Bibliographical note

Funding Information:
T.-H.L. and G.K. were supported by the NSF Grant No. DMR-1733071. A.C. was supported by the NSF Grant No. DMR-1523036. H.M. is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Early Career Award Program under Award No. 1047478.

Funding Information:
In this work, we build on the recent understanding of the physics of the Hund’s metal and studied a phenomenological γ -model describing the superconductivity mediated by a bosonic propagator with a power-law frequency dependence, λ ( Ω ) ∝ 1 / | Ω | γ . This model captures the essence of the transition from a Hund’s metal to a superconductor at a temperature comparable to or higher than a crossover temperature between non-Fermi-liquid and Fermi-liquid behavior [9,11] . We use the model to explore the main characteristics of the pairing gap and T c , ignoring the complications such as the multiorbital or multiband structure of FeSCs. We find 2 Δ max / T c to be independent of the interaction strength and equal to 7.2–7.3 if we use γ = 1.2 obtained from the three-band Hubbard model. These results are in surprisingly good agreement with recent experiments which argued that 2 Δ max / T c ≈ 7.2 is the same in at least two FeSCs: LiFeAs and FeTe 0.55 Se 0.45 [14] . It would be interesting to extend these observations to a more realistic description of the materials, taking into account the multiorbital nature of the problem, and the fact that, in Hund’s metals, the power-law behavior of local spin susceptibility holds in an intermediate temperature range between a Fermi-liquid regime at low temperatures and a high temperature regime where the orbitals and the spins are both quasi-atomic-like. We would like to thank Ar. Abanov, K. Haule, K. Stadler, J. VonDelft, and Y. Wu for numerous discussions on the subject of Hund’s metals and superconductivity in the γ -model. T.-H. L. and G. K. were supported by the NSF Grant No. DMR-1733071. A. C. was supported by the NSF Grant No. DMR-1523036. H. M. is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Early Career Award Program under Award No. 1047478. [1] 1 Y. Kamihara , T. Watanabe , M. Hirano , and H. Hosono , J. Am. Chem. Soc. 130 , 3296 ( 2008 ). JACSAT 0002-7863 10.1021/ja800073m [2] 2 J. Paglione and R. L. Greene , Nat. Phys. 6 , 645 ( 2010 ). NPAHAX 1745-2473 10.1038/nphys1759 [3] 3 D. C. Johnston , Adv. Phys. 59 , 803 ( 2010 ). ADPHAH 0001-8732 10.1080/00018732.2010.513480 [4] 4 Q. Si and E. Abrahams , Phys. Rev. Lett. 101 , 076401 ( 2008 ). PRLTAO 0031-9007 10.1103/PhysRevLett.101.076401 [5] 5 P. Werner , E. Gull , M. Troyer , and A. J. Millis , Phys. Rev. Lett. 101 , 166405 ( 2008 ). PRLTAO 0031-9007 10.1103/PhysRevLett.101.166405 [6] 6 K. Haule and G. Kotliar , New J. Phys. 11 , 025021 ( 2009 ). NJOPFM 1367-2630 10.1088/1367-2630/11/2/025021 [7] 7 A. Georges , L. de’ Medici , and J. Mravlje , Annu. Rev. Condens. Matter Phys. 4 , 137 ( 2013 ). ARCMCX 1947-5454 10.1146/annurev-conmatphys-020911-125045 [8] 8 Z. P. Yin , K. Haule , and G. Kotliar , Nat. Mater. 10 , 932 ( 2011 ). NMAACR 1476-1122 10.1038/nmat3120 [9] 9 Z. P. Yin , K. Haule , and G. Kotliar , Phys. Rev. B 86 , 195141 ( 2012 ). PRBMDO 1098-0121 10.1103/PhysRevB.86.195141 [10] 10 C. Aron and G. Kotliar , Phys. Rev. B 91 , 041110 ( 2015 ). PRBMDO 1098-0121 10.1103/PhysRevB.91.041110 [11] 11 K. M. Stadler , Z. P. Yin , J. von Delft , G. Kotliar , and A. Weichselbaum , Phys. Rev. Lett. 115 , 136401 ( 2015 ). PRLTAO 0031-9007 10.1103/PhysRevLett.115.136401 [12] 12 V. K. Thorsmølle , M. Khodas , Z. P. Yin , C. Zhang , S. V. Carr , P. Dai , and G. Blumberg , Phys. Rev. B 93 , 054515 ( 2016 ). PRBMDO 2469-9950 10.1103/PhysRevB.93.054515 [13] 13 A. Charnukha , Z. P. Yin , Y. Song , C. D. Cao , P. Dai , K. Haule , G. Kotliar , and D. N. Basov , Phys. Rev. B 96 , 195121 ( 2017 ). PRBMDO 2469-9950 10.1103/PhysRevB.96.195121 [14] 14 H. Miao , W. H. Brito , Z. P. Yin , R. D. Zhong , G. D. Gu , P. D. Johnson , M. P. M. Dean , S. Choi , G. K. Kotliar , W. Ku , X. C. Wang , C. Q. Jin , S. F. Wu , T. Qian , and H. Ding , Phys. Rev. B 98 , 020502 ( 2018 ). PRBMDO 2469-9950 10.1103/PhysRevB.98.020502 [15] 15 Z. Wang , H. Yang , D. Fang , B. Shen , Q.-H. Wang , L. Shan , C. Zhang , P. Dai , and H.-H. Wen , Nat. Phys. 9 , 42 ( 2013 ). NPAHAX 1745-2473 10.1038/nphys2478 [16] 16 M. Eschrig , Adv. Phys. 55 , 47 ( 2006 ). ADPHAH 0001-8732 10.1080/00018730600645636 [17] 17 J. Mravlje and A. Georges , Phys. Rev. Lett. 117 , 036401 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.117.036401 [18] 18 J. Mravlje , M. Aichhorn , T. Miyake , K. Haule , G. Kotliar , and A. Georges , Phys. Rev. Lett. 106 , 096401 ( 2011 ). PRLTAO 0031-9007 10.1103/PhysRevLett.106.096401 [19] 19 H. T. Dang , J. Mravlje , A. Georges , and A. J. Millis , Phys. Rev. Lett. 115 , 107003 ( 2015 ). PRLTAO 0031-9007 10.1103/PhysRevLett.115.107003 [20] 20 H. T. Dang , J. Mravlje , A. Georges , and A. J. Millis , Phys. Rev. B 91 , 195149 ( 2015 ). PRBMDO 1098-0121 10.1103/PhysRevB.91.195149 [21] 21 X. Deng , K. Haule , and G. Kotliar , Phys. Rev. Lett. 116 , 256401 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.116.256401 [22] 22 A. Abanov , A. V. Chubukov , and J. Schmalian , Adv. Phys. 52 , 119 ( 2003 ). ADPHAH 0001-8732 10.1080/0001873021000057123 [23] 23 A. V. Chubukov , D. Pines , and J. Schmalian , in The Physics of Superconductors , edited by K. H. Bennemann and J. B. Ketterson ( Springer , Berlin, 2003 ), Vol.  1 , p.  495 . [24] 24 A. Abanov , A. V. Chubukov , and A. M. Finkel’stein , Europhys. Lett. 54 , 488 ( 2001 ). EULEEJ 0295-5075 10.1209/epl/i2001-00266-0 [25] 25 A. Abanov , A. V. Chubukov , and M. R. Norman , Phys. Rev. B 78 , 220507 ( 2008 ). PRBMDO 1098-0121 10.1103/PhysRevB.78.220507 [26] 26 E.-G. Moon and A. Chubukov , J. Low Temp. Phys. 161 , 263 ( 2010 ). JLTPAC 0022-2291 10.1007/s10909-010-0199-y [27] 27 Y. Wang , A. Abanov , B. L. Altshuler , E. A. Yuzbashyan , and A. V. Chubukov , Phys. Rev. Lett. 117 , 157001 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.117.157001 [28] 28 J.-H. She , B. J. Overbosch , Y.-W. Sun , Y. Liu , K. E. Schalm , J. A. Mydosh , and J. Zaanen , Phys. Rev. B 84 , 144527 ( 2011 ). PRBMDO 1098-0121 10.1103/PhysRevB.84.144527 [29] 29 E. G. Moon and S. Sachdev , Phys. Rev. B 80 , 035117 ( 2009 ). PRBMDO 1098-0121 10.1103/PhysRevB.80.035117 [30] 30 M. A. Metlitski , D. F. Mross , S. Sachdev , and T. Senthil , Phys. Rev. B 91 , 115111 ( 2015 ). PRBMDO 1098-0121 10.1103/PhysRevB.91.115111 [31] 31 H. Wang , S. Raghu , and G. Torroba , Phys. Rev. B 95 , 165137 ( 2017 ). PRBMDO 2469-9950 10.1103/PhysRevB.95.165137 [32] 32 See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.121.187003 for further details. [33] 33 P. J. Hirschfeld , M. M. Korshunov , and I. I. Mazin , Rep. Prog. Phys. 74 , 124508 ( 2011 ). RPPHAG 0034-4885 10.1088/0034-4885/74/12/124508 [34] 34 A. V. Chubukov , in Iron-Based Superconductivity , edited by D. P. Johnson , G. Xu , and W.-G. Yin , Springer Series in Materials Science , Vol.  2105 ( Springer International Publishing , Switzerland, 2015) pp.  255–329 . [35] 35 L. de Medici , in Iron-Based Superconductivity , edited by D. P. Johnson , G. Xu , and W.-G. Yin , Springer Series in Materials Science , Vol.  2105 ( Springer International Publishing , Switzerland, 2015) pp.  409–441 . [36] 36 E. Bascones , B. Valenzuela , and M. J. Caldern , C.R. Phys. 17 , 36 ( 2016 ). CRPOBN 1631-0705 10.1016/j.crhy.2015.05.004 [37] 37 R. M. Fernandes and A. V. Chubukov , Rep. Prog. Phys. 80 , 014503 ( 2017 ). RPPHAG 0034-4885 10.1088/1361-6633/80/1/014503 [38] 38 G. Eliashberg , Sov. Phys. JETP 11 , 696 ( 1960 ). SPHJAR 0038-5646 [39] 39 R. Combescot , Phys. Rev. B 51 , 11625 ( 1995 ). PRBMDO 0163-1829 10.1103/PhysRevB.51.11625 [40] 40 N. E. Bonesteel , I. A. McDonald , and C. Nayak , Phys. Rev. Lett. 77 , 3009 ( 1996 ). PRLTAO 0031-9007 10.1103/PhysRevLett.77.3009 [41] 41 A. V. Chubukov , A. M. Finkel’stein , R. Haslinger , and D. K. Morr , Phys. Rev. Lett. 90 , 077002 ( 2003 ). PRLTAO 0031-9007 10.1103/PhysRevLett.90.077002 [42] 42 A. Klein , S. Lederer , D. Chowdhury , E. Berg , and A. Chubukov , Phys. Rev. B 97 , 155115 ( 2018 ). PRBMDO 2469-9950 10.1103/PhysRevB.97.155115 [43] 43 B. L. Altshuler , L. B. Ioffe , and A. J. Millis , Phys. Rev. B 50 , 14048 ( 1994 ). PRBMDO 0163-1829 10.1103/PhysRevB.50.14048 [44] 44 R. Roussev and A. J. Millis , Phys. Rev. B 63 , 140504 ( 2001 ). PRBMDO 0163-1829 10.1103/PhysRevB.63.140504 [45] 45 D. T. Son , Phys. Rev. D 59 , 094019 ( 1999 ). PRVDAQ 0556-2821 10.1103/PhysRevD.59.094019 [46] 46 A. V. Chubukov and J. Schmalian , Phys. Rev. B 72 , 174520 ( 2005 ). PRBMDO 1098-0121 10.1103/PhysRevB.72.174520 [47] 47 J. Fink , A. Koitzsch , J. Geck , V. Zabolotnyy , M. Knupfer , B. Büchner , A. Chubukov , and H. Berger , Phys. Rev. B 74 , 165102 ( 2006 ). PRBMDO 1098-0121 10.1103/PhysRevB.74.165102 [48] 48 A. Aperis and P. M. Oppeneer , Phys. Rev. B 97 , 060501 ( 2018 ). PRBMDO 2469-9950 10.1103/PhysRevB.97.060501 [49] 49 J. J. Lee , F. T. Schmitt , R. G. Moore , S. Johnston , Y. T. Cui , W. Li , M. Yi , Z. K. Liu , M. Hashimoto , Y. Zhang , D. H. Lu , T. P. Devereaux , D. H. Lee , and Z. X. Shen , Nature (London) 515 , 245 ( 2014 ). NATUAS 0028-0836 10.1038/nature13894 [50] 50 S. Coh , M. L. Cohen , and S. G. Louie , New J. Phys. 17 , 073027 ( 2015 ). NJOPFM 1367-2630 10.1088/1367-2630/17/7/073027 [51] 51 C. Zhang , Z. Liu , Z. Chen , Y. Xie , R. He , S. Tang , J. He , W. Li , T. Jia , S. N. Rebec , E. Y. Ma , H. Yan , M. Hashimoto , Donghui , S.-K. Mo , Y. Hikita , R. G. Moore , H. Y. Hwang , D. Lee , and Z. Shen , Nat. Commun. 8 , 14468 ( 2017 ). NCAOBW 2041-1723 10.1038/ncomms14468 [52] 52 K. Terashima , Y. Sekiba , J. H. Bowen , K. Nakayama , T. Kawahara , T. Sato , P. Richard , Y.-M. Xu , L. J. Li , G. H. Cao , Z.-A. Xu , H. Ding , and T. Takahashi , Proc. Natl. Acad. Sci. U.S.A. 106 , 7330 ( 2009 ). PNASA6 0027-8424 10.1073/pnas.0900469106 [53] 53 K. Nakayama , T. Sato , P. Richard , Y.-M. Xu , T. Kawahara , K. Umezawa , T. Qian , M. Neupane , G. F. Chen , H. Ding , and T. Takahashi , Phys. Rev. B 83 , 020501 ( 2011 ). PRBMDO 1098-0121 10.1103/PhysRevB.83.020501 [54] 54 X.-P. Wang , T. Qian , P. Richard , P. Zhang , J. Dong , H.-D. Wang , C.-H. Dong , M.-H. Fang , and H. Ding , Europhys. Lett. 93 , 57001 ( 2011 ). EULEEJ 0295-5075 10.1209/0295-5075/93/57001 [55] 55 N. Xu , P. Richard , X.-P. Wang , X. Shi , A. van Roekeghem , T. Qian , E. Ieki , K. Nakayama , T. Sato , E. Rienks , S. Thirupathaiah , J. Xing , H.-H. Wen , M. Shi , T. Takahashi , and H. Ding , Phys. Rev. B 87 , 094513 ( 2013 ). PRBMDO 1098-0121 10.1103/PhysRevB.87.094513 [56] 56 Z.-H. Liu , P. Richard , K. Nakayama , G.-F. Chen , S. Dong , J.-B. He , D.-M. Wang , T.-L. Xia , K. Umezawa , T. Kawahara , S. Souma , T. Sato , T. Takahashi , T. Qian , Y. Huang , N. Xu , Y. Shi , H. Ding , and S.-C. Wang , Phys. Rev. B 84 , 064519 ( 2011 ). PRBMDO 1098-0121 10.1103/PhysRevB.84.064519 [57] 57 H. Miao , P. Richard , Y. Tanaka , K. Nakayama , T. Qian , K. Umezawa , T. Sato , Y.-M. Xu , Y. B. Shi , N. Xu , X.-P. Wang , P. Zhang , H.-B. Yang , Z.-J. Xu , J. S. Wen , G.-D. Gu , X. Dai , J.-P. Hu , T. Takahashi , and H. Ding , Phys. Rev. B 85 , 094506 ( 2012 ). PRBMDO 1098-0121 10.1103/PhysRevB.85.094506 [58] 58 H. Miao , T. Qian , X. Shi , P. Richard , T. K. Kim , M. Hoesch , L. Y. Xing , X.-C. Wang , C.-Q. Jin , J.-P. Hu , and H. Ding , Nat. Commun. 6 , 6056 ( 2015 ). NCAOBW 2041-1723 10.1038/ncomms7056 [59] 59 H. Miao , Z. P. Yin , S. F. Wu , J. M. Li , J. Ma , B.-Q. Lv , X. P. Wang , T. Qian , P. Richard , L.-Y. Xing , X.-C. Wang , C. Q. Jin , K. Haule , G. Kotliar , and H. Ding , Phys. Rev. B 94 , 201109 ( 2016 ). PRBMDO 2469-9950 10.1103/PhysRevB.94.201109 [60] 60 Y.-B. Shi , Y.-B. Huang , X.-P. Wang , X. Shi , A.-V. Roekeghem , W.-L. Zhang , N. Xu , P. Richard , T. Qian , E. Rienks , S. Thirupathaiah , K. Zhao , C.-Q. Jing , M. Shi , and H. Ding , Chin. Phys. Lett. 31 , 067403 ( 2014 ). CPLEEU 0256-307X 10.1088/0256-307X/31/6/067403 [61] 61 D. Mou , T. Kong , W. R. Meier , F. Lochner , L.-L. Wang , Q. Lin , Y. Wu , S. L. Bud’ko , I. Eremin , D. D. Johnson , P. C. Canfield , and A. Kaminski , Phys. Rev. Lett. 117 , 277001 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.117.277001 [62] 62 H. Ding , P. Richard , K. Nakayama , K. Sugawara , T. Arakane , Y. Sekiba , A. Takayama , S. Souma , T. Sato , T. Takahashi , Z. Wang , X. Dai , Z. Fang , G. F. Chen , J. L. Luo , and N. L. Wang , Europhys. Lett. 83 , 47001 ( 2008 ). EULEEJ 0295-5075 10.1209/0295-5075/83/47001 [63] 63 N. Xu , P. Richard , X. Shi , A. van Roekeghem , T. Qian , E. Razzoli , E. Rienks , G.-F. Chen , E. Ieki , K. Nakayama , T. Sato , T. Takahashi , M. Shi , and H. Ding , Phys. Rev. B 88 , 220508 ( 2013 ). PRBMDO 1098-0121 10.1103/PhysRevB.88.220508 [64] 64 Y. Zhang , Z. R. Ye , Q. Q. Ge , F. Chen , J. Jiang , M. Xu , B. P. Xie , and D. L. Feng , Nat. Phys. 8 , 371 ( 2012 ). NPAHAX 1745-2473 10.1038/nphys2248 [65] 65 D. Liu , Phys. Rev. X 8 , 031033 ( 2018 ). PRXHAE 2160-3308 10.1103/PhysRevX.8.031033 [66] 66 J. J. Lee , F. T. Schmitt , R. G. Moore , S. Johnston , Y.-T. Cui , W. Li , M. Yi , Z. K. Liu , M. Hashimoto , Y. Zhang , D. H. Lu , T. P. Devereaux , D.-H. Lee , and Z.-X. Shen , Nature (London) 515 , 245 ( 2014 ). NATUAS 0028-0836 10.1038/nature13894 [67] 67 X. Shi , Z.-Q. Han , X.-L. Peng , P. Richard , T. Qian , X.-X. Wu , M.-W. Qiu , S. C. Wang , J. P. Hu , Y.-J. Sun , and H. Ding , Nat. Commun. 8 , 14988 ( 2017 ). NCAOBW 2041-1723 10.1038/ncomms14988 [68] 68 A. Charnukha , D. Pröpper , N. D. Zhigadlo , M. Naito , M. Schmidt , Z. Wang , J. Deisenhofer , A. Loidl , B. Keimer , A. V. Boris , and D. N. Basov , Phys. Rev. Lett. 120 , 087001 ( 2018 ). PRLTAO 0031-9007 10.1103/PhysRevLett.120.087001 [69] 69 D. N. Basov and A. V. Chubukov , Nat. Phys. 7 , 272 ( 2011 ). NPAHAX 1745-2473 10.1038/nphys1975 [70] 70 K. A. Musaelian , J. Betouras , A. V. Chubukov , and R. Joynt , Phys. Rev. B 53 , 3598 ( 1996 ). PRBMDO 0163-1829 10.1103/PhysRevB.53.3598 [71] 71 D. Pelc , P. Popčević , G. Yu , M. Požek , M. Greven , and N. Barišić , arXiv:1710.10221 . [72] 72 K. K. Gomes , A. N. Pasupathy , A. Pushp , S. Ono , Y. Ando , and A. Yazdani , Nature (London) 447 , 569 ( 2007 ). NATUAS 0028-0836 10.1038/nature05881 [73] 73 N. K. Sato , N. Aso , K. Miyake , R. Shiina , P. Thalmeier , G. Varelogiannis , C. Geibel , F. Steglich , P. Fulde , and T. Komatsubara , Nature (London) 410 , 340 ( 2001 ). NATUAS 0028-0836 10.1038/35066519 [74] 74 D. Daghero , M. Tortello , G. Ummarino , J.-C. Griveau , E. Colineau , R. Eloirdi , A. Shick , J. Kolorenc , A. Lichtenstein , and R. Caciuffo , Nat. Commun. 3 , 786 ( 2012 ). NCAOBW 2041-1723 10.1038/ncomms1785 [75] 75 R. Lortz , Y. Wang , A. Demuer , P. H. M. Böttger , B. Bergk , G. Zwicknagl , Y. Nakazawa , and J. Wosnitza , Phys. Rev. Lett. 99 , 187002 ( 2007 ). PRLTAO 0031-9007 10.1103/PhysRevLett.99.187002 [76] 76 Z. P. Yin , K. Haule , and G. Kotliar , Nat. Phys. 10 , 845 ( 2014 ). NPAHAX 1745-2473 10.1038/nphys3116 [77] 77 R. Nourafkan , G. Kotliar , and A.-M. S. Tremblay , Phys. Rev. Lett. 117 , 137001 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.117.137001 [78] 78 G. A. Ummarino , Phys. Rev. B 83 , 092508 ( 2011 ). PRBMDO 1098-0121 10.1103/PhysRevB.83.092508

Publisher Copyright:
© 2018 American Physical Society.

Fingerprint

Dive into the research topics of 'Pairing Mechanism in Hund's Metal Superconductors and the Universality of the Superconducting Gap to Critical Temperature Ratio'. Together they form a unique fingerprint.

Cite this