Abstract
We analyze a simple model containing the physical ingredients of a Hund's metal, the local spin fluctuations with power-law correlators, (Ω0/|Ω|)γ, with γ greater than one, interacting with electronic quasiparticles. While the critical temperature and the gap change significantly with varying parameters, the 2Δmax/kBTc remains close to twice the BCS value in agreement with experimental observations in the iron-based superconductors (FeSC).
Original language | English (US) |
---|---|
Article number | 187003 |
Journal | Physical review letters |
Volume | 121 |
Issue number | 18 |
DOIs | |
State | Published - Nov 1 2018 |
Bibliographical note
Funding Information:T.-H.L. and G.K. were supported by the NSF Grant No. DMR-1733071. A.C. was supported by the NSF Grant No. DMR-1523036. H.M. is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Early Career Award Program under Award No. 1047478.
Funding Information:
In this work, we build on the recent understanding of the physics of the Hund’s metal and studied a phenomenological γ -model describing the superconductivity mediated by a bosonic propagator with a power-law frequency dependence, λ ( Ω ) ∝ 1 / | Ω | γ . This model captures the essence of the transition from a Hund’s metal to a superconductor at a temperature comparable to or higher than a crossover temperature between non-Fermi-liquid and Fermi-liquid behavior [9,11] . We use the model to explore the main characteristics of the pairing gap and T c , ignoring the complications such as the multiorbital or multiband structure of FeSCs. We find 2 Δ max / T c to be independent of the interaction strength and equal to 7.2–7.3 if we use γ = 1.2 obtained from the three-band Hubbard model. These results are in surprisingly good agreement with recent experiments which argued that 2 Δ max / T c ≈ 7.2 is the same in at least two FeSCs: LiFeAs and FeTe 0.55 Se 0.45 [14] . It would be interesting to extend these observations to a more realistic description of the materials, taking into account the multiorbital nature of the problem, and the fact that, in Hund’s metals, the power-law behavior of local spin susceptibility holds in an intermediate temperature range between a Fermi-liquid regime at low temperatures and a high temperature regime where the orbitals and the spins are both quasi-atomic-like. We would like to thank Ar. Abanov, K. Haule, K. Stadler, J. VonDelft, and Y. Wu for numerous discussions on the subject of Hund’s metals and superconductivity in the γ -model. T.-H. L. and G. K. were supported by the NSF Grant No. DMR-1733071. A. C. was supported by the NSF Grant No. DMR-1523036. H. M. is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Early Career Award Program under Award No. 1047478. [1] 1 Y. Kamihara , T. Watanabe , M. Hirano , and H. Hosono , J. Am. Chem. Soc. 130 , 3296 ( 2008 ). JACSAT 0002-7863 10.1021/ja800073m [2] 2 J. Paglione and R. L. Greene , Nat. Phys. 6 , 645 ( 2010 ). NPAHAX 1745-2473 10.1038/nphys1759 [3] 3 D. C. Johnston , Adv. Phys. 59 , 803 ( 2010 ). ADPHAH 0001-8732 10.1080/00018732.2010.513480 [4] 4 Q. Si and E. Abrahams , Phys. Rev. Lett. 101 , 076401 ( 2008 ). PRLTAO 0031-9007 10.1103/PhysRevLett.101.076401 [5] 5 P. Werner , E. Gull , M. Troyer , and A. J. Millis , Phys. Rev. Lett. 101 , 166405 ( 2008 ). PRLTAO 0031-9007 10.1103/PhysRevLett.101.166405 [6] 6 K. Haule and G. Kotliar , New J. Phys. 11 , 025021 ( 2009 ). NJOPFM 1367-2630 10.1088/1367-2630/11/2/025021 [7] 7 A. Georges , L. de’ Medici , and J. Mravlje , Annu. Rev. Condens. Matter Phys. 4 , 137 ( 2013 ). ARCMCX 1947-5454 10.1146/annurev-conmatphys-020911-125045 [8] 8 Z. P. Yin , K. Haule , and G. Kotliar , Nat. Mater. 10 , 932 ( 2011 ). NMAACR 1476-1122 10.1038/nmat3120 [9] 9 Z. P. Yin , K. Haule , and G. Kotliar , Phys. Rev. B 86 , 195141 ( 2012 ). PRBMDO 1098-0121 10.1103/PhysRevB.86.195141 [10] 10 C. Aron and G. Kotliar , Phys. Rev. B 91 , 041110 ( 2015 ). PRBMDO 1098-0121 10.1103/PhysRevB.91.041110 [11] 11 K. M. Stadler , Z. P. Yin , J. von Delft , G. Kotliar , and A. Weichselbaum , Phys. Rev. Lett. 115 , 136401 ( 2015 ). PRLTAO 0031-9007 10.1103/PhysRevLett.115.136401 [12] 12 V. K. Thorsmølle , M. Khodas , Z. P. Yin , C. Zhang , S. V. Carr , P. Dai , and G. Blumberg , Phys. Rev. B 93 , 054515 ( 2016 ). PRBMDO 2469-9950 10.1103/PhysRevB.93.054515 [13] 13 A. Charnukha , Z. P. Yin , Y. Song , C. D. Cao , P. Dai , K. Haule , G. Kotliar , and D. N. Basov , Phys. Rev. B 96 , 195121 ( 2017 ). PRBMDO 2469-9950 10.1103/PhysRevB.96.195121 [14] 14 H. Miao , W. H. Brito , Z. P. Yin , R. D. Zhong , G. D. Gu , P. D. Johnson , M. P. M. Dean , S. Choi , G. K. Kotliar , W. Ku , X. C. Wang , C. Q. Jin , S. F. Wu , T. Qian , and H. Ding , Phys. Rev. B 98 , 020502 ( 2018 ). PRBMDO 2469-9950 10.1103/PhysRevB.98.020502 [15] 15 Z. Wang , H. Yang , D. Fang , B. Shen , Q.-H. Wang , L. Shan , C. Zhang , P. Dai , and H.-H. Wen , Nat. Phys. 9 , 42 ( 2013 ). NPAHAX 1745-2473 10.1038/nphys2478 [16] 16 M. Eschrig , Adv. Phys. 55 , 47 ( 2006 ). ADPHAH 0001-8732 10.1080/00018730600645636 [17] 17 J. Mravlje and A. Georges , Phys. Rev. Lett. 117 , 036401 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.117.036401 [18] 18 J. Mravlje , M. Aichhorn , T. Miyake , K. Haule , G. Kotliar , and A. Georges , Phys. Rev. Lett. 106 , 096401 ( 2011 ). PRLTAO 0031-9007 10.1103/PhysRevLett.106.096401 [19] 19 H. T. Dang , J. Mravlje , A. Georges , and A. J. Millis , Phys. Rev. Lett. 115 , 107003 ( 2015 ). PRLTAO 0031-9007 10.1103/PhysRevLett.115.107003 [20] 20 H. T. Dang , J. Mravlje , A. Georges , and A. J. Millis , Phys. Rev. B 91 , 195149 ( 2015 ). PRBMDO 1098-0121 10.1103/PhysRevB.91.195149 [21] 21 X. Deng , K. Haule , and G. Kotliar , Phys. Rev. Lett. 116 , 256401 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.116.256401 [22] 22 A. Abanov , A. V. Chubukov , and J. Schmalian , Adv. Phys. 52 , 119 ( 2003 ). ADPHAH 0001-8732 10.1080/0001873021000057123 [23] 23 A. V. Chubukov , D. Pines , and J. Schmalian , in The Physics of Superconductors , edited by K. H. Bennemann and J. B. Ketterson ( Springer , Berlin, 2003 ), Vol. 1 , p. 495 . [24] 24 A. Abanov , A. V. Chubukov , and A. M. Finkel’stein , Europhys. Lett. 54 , 488 ( 2001 ). EULEEJ 0295-5075 10.1209/epl/i2001-00266-0 [25] 25 A. Abanov , A. V. Chubukov , and M. R. Norman , Phys. Rev. B 78 , 220507 ( 2008 ). PRBMDO 1098-0121 10.1103/PhysRevB.78.220507 [26] 26 E.-G. Moon and A. Chubukov , J. Low Temp. Phys. 161 , 263 ( 2010 ). JLTPAC 0022-2291 10.1007/s10909-010-0199-y [27] 27 Y. Wang , A. Abanov , B. L. Altshuler , E. A. Yuzbashyan , and A. V. Chubukov , Phys. Rev. Lett. 117 , 157001 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.117.157001 [28] 28 J.-H. She , B. J. Overbosch , Y.-W. Sun , Y. Liu , K. E. Schalm , J. A. Mydosh , and J. Zaanen , Phys. Rev. B 84 , 144527 ( 2011 ). PRBMDO 1098-0121 10.1103/PhysRevB.84.144527 [29] 29 E. G. Moon and S. Sachdev , Phys. Rev. B 80 , 035117 ( 2009 ). PRBMDO 1098-0121 10.1103/PhysRevB.80.035117 [30] 30 M. A. Metlitski , D. F. Mross , S. Sachdev , and T. Senthil , Phys. Rev. B 91 , 115111 ( 2015 ). PRBMDO 1098-0121 10.1103/PhysRevB.91.115111 [31] 31 H. Wang , S. Raghu , and G. Torroba , Phys. Rev. B 95 , 165137 ( 2017 ). PRBMDO 2469-9950 10.1103/PhysRevB.95.165137 [32] 32 See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.121.187003 for further details. [33] 33 P. J. Hirschfeld , M. M. Korshunov , and I. I. Mazin , Rep. Prog. Phys. 74 , 124508 ( 2011 ). RPPHAG 0034-4885 10.1088/0034-4885/74/12/124508 [34] 34 A. V. Chubukov , in Iron-Based Superconductivity , edited by D. P. Johnson , G. Xu , and W.-G. Yin , Springer Series in Materials Science , Vol. 2105 ( Springer International Publishing , Switzerland, 2015) pp. 255–329 . [35] 35 L. de Medici , in Iron-Based Superconductivity , edited by D. P. Johnson , G. Xu , and W.-G. Yin , Springer Series in Materials Science , Vol. 2105 ( Springer International Publishing , Switzerland, 2015) pp. 409–441 . [36] 36 E. Bascones , B. Valenzuela , and M. J. Caldern , C.R. Phys. 17 , 36 ( 2016 ). CRPOBN 1631-0705 10.1016/j.crhy.2015.05.004 [37] 37 R. M. Fernandes and A. V. Chubukov , Rep. Prog. Phys. 80 , 014503 ( 2017 ). RPPHAG 0034-4885 10.1088/1361-6633/80/1/014503 [38] 38 G. Eliashberg , Sov. Phys. JETP 11 , 696 ( 1960 ). SPHJAR 0038-5646 [39] 39 R. Combescot , Phys. Rev. B 51 , 11625 ( 1995 ). PRBMDO 0163-1829 10.1103/PhysRevB.51.11625 [40] 40 N. E. Bonesteel , I. A. McDonald , and C. Nayak , Phys. Rev. Lett. 77 , 3009 ( 1996 ). PRLTAO 0031-9007 10.1103/PhysRevLett.77.3009 [41] 41 A. V. Chubukov , A. M. Finkel’stein , R. Haslinger , and D. K. Morr , Phys. Rev. Lett. 90 , 077002 ( 2003 ). PRLTAO 0031-9007 10.1103/PhysRevLett.90.077002 [42] 42 A. Klein , S. Lederer , D. Chowdhury , E. Berg , and A. Chubukov , Phys. Rev. B 97 , 155115 ( 2018 ). PRBMDO 2469-9950 10.1103/PhysRevB.97.155115 [43] 43 B. L. Altshuler , L. B. Ioffe , and A. J. Millis , Phys. Rev. B 50 , 14048 ( 1994 ). PRBMDO 0163-1829 10.1103/PhysRevB.50.14048 [44] 44 R. Roussev and A. J. Millis , Phys. Rev. B 63 , 140504 ( 2001 ). PRBMDO 0163-1829 10.1103/PhysRevB.63.140504 [45] 45 D. T. Son , Phys. Rev. D 59 , 094019 ( 1999 ). PRVDAQ 0556-2821 10.1103/PhysRevD.59.094019 [46] 46 A. V. Chubukov and J. Schmalian , Phys. Rev. B 72 , 174520 ( 2005 ). PRBMDO 1098-0121 10.1103/PhysRevB.72.174520 [47] 47 J. Fink , A. Koitzsch , J. Geck , V. Zabolotnyy , M. Knupfer , B. Büchner , A. Chubukov , and H. Berger , Phys. Rev. B 74 , 165102 ( 2006 ). PRBMDO 1098-0121 10.1103/PhysRevB.74.165102 [48] 48 A. Aperis and P. M. Oppeneer , Phys. Rev. B 97 , 060501 ( 2018 ). PRBMDO 2469-9950 10.1103/PhysRevB.97.060501 [49] 49 J. J. Lee , F. T. Schmitt , R. G. Moore , S. Johnston , Y. T. Cui , W. Li , M. Yi , Z. K. Liu , M. Hashimoto , Y. Zhang , D. H. Lu , T. P. Devereaux , D. H. Lee , and Z. X. Shen , Nature (London) 515 , 245 ( 2014 ). NATUAS 0028-0836 10.1038/nature13894 [50] 50 S. Coh , M. L. Cohen , and S. G. Louie , New J. Phys. 17 , 073027 ( 2015 ). NJOPFM 1367-2630 10.1088/1367-2630/17/7/073027 [51] 51 C. Zhang , Z. Liu , Z. Chen , Y. Xie , R. He , S. Tang , J. He , W. Li , T. Jia , S. N. Rebec , E. Y. Ma , H. Yan , M. Hashimoto , Donghui , S.-K. Mo , Y. Hikita , R. G. Moore , H. Y. Hwang , D. Lee , and Z. Shen , Nat. Commun. 8 , 14468 ( 2017 ). NCAOBW 2041-1723 10.1038/ncomms14468 [52] 52 K. Terashima , Y. Sekiba , J. H. Bowen , K. Nakayama , T. Kawahara , T. Sato , P. Richard , Y.-M. Xu , L. J. Li , G. H. Cao , Z.-A. Xu , H. Ding , and T. Takahashi , Proc. Natl. Acad. Sci. U.S.A. 106 , 7330 ( 2009 ). PNASA6 0027-8424 10.1073/pnas.0900469106 [53] 53 K. Nakayama , T. Sato , P. Richard , Y.-M. Xu , T. Kawahara , K. Umezawa , T. Qian , M. Neupane , G. F. Chen , H. Ding , and T. Takahashi , Phys. Rev. B 83 , 020501 ( 2011 ). PRBMDO 1098-0121 10.1103/PhysRevB.83.020501 [54] 54 X.-P. Wang , T. Qian , P. Richard , P. Zhang , J. Dong , H.-D. Wang , C.-H. Dong , M.-H. Fang , and H. Ding , Europhys. Lett. 93 , 57001 ( 2011 ). EULEEJ 0295-5075 10.1209/0295-5075/93/57001 [55] 55 N. Xu , P. Richard , X.-P. Wang , X. Shi , A. van Roekeghem , T. Qian , E. Ieki , K. Nakayama , T. Sato , E. Rienks , S. Thirupathaiah , J. Xing , H.-H. Wen , M. Shi , T. Takahashi , and H. Ding , Phys. Rev. B 87 , 094513 ( 2013 ). PRBMDO 1098-0121 10.1103/PhysRevB.87.094513 [56] 56 Z.-H. Liu , P. Richard , K. Nakayama , G.-F. Chen , S. Dong , J.-B. He , D.-M. Wang , T.-L. Xia , K. Umezawa , T. Kawahara , S. Souma , T. Sato , T. Takahashi , T. Qian , Y. Huang , N. Xu , Y. Shi , H. Ding , and S.-C. Wang , Phys. Rev. B 84 , 064519 ( 2011 ). PRBMDO 1098-0121 10.1103/PhysRevB.84.064519 [57] 57 H. Miao , P. Richard , Y. Tanaka , K. Nakayama , T. Qian , K. Umezawa , T. Sato , Y.-M. Xu , Y. B. Shi , N. Xu , X.-P. Wang , P. Zhang , H.-B. Yang , Z.-J. Xu , J. S. Wen , G.-D. Gu , X. Dai , J.-P. Hu , T. Takahashi , and H. Ding , Phys. Rev. B 85 , 094506 ( 2012 ). PRBMDO 1098-0121 10.1103/PhysRevB.85.094506 [58] 58 H. Miao , T. Qian , X. Shi , P. Richard , T. K. Kim , M. Hoesch , L. Y. Xing , X.-C. Wang , C.-Q. Jin , J.-P. Hu , and H. Ding , Nat. Commun. 6 , 6056 ( 2015 ). NCAOBW 2041-1723 10.1038/ncomms7056 [59] 59 H. Miao , Z. P. Yin , S. F. Wu , J. M. Li , J. Ma , B.-Q. Lv , X. P. Wang , T. Qian , P. Richard , L.-Y. Xing , X.-C. Wang , C. Q. Jin , K. Haule , G. Kotliar , and H. Ding , Phys. Rev. B 94 , 201109 ( 2016 ). PRBMDO 2469-9950 10.1103/PhysRevB.94.201109 [60] 60 Y.-B. Shi , Y.-B. Huang , X.-P. Wang , X. Shi , A.-V. Roekeghem , W.-L. Zhang , N. Xu , P. Richard , T. Qian , E. Rienks , S. Thirupathaiah , K. Zhao , C.-Q. Jing , M. Shi , and H. Ding , Chin. Phys. Lett. 31 , 067403 ( 2014 ). CPLEEU 0256-307X 10.1088/0256-307X/31/6/067403 [61] 61 D. Mou , T. Kong , W. R. Meier , F. Lochner , L.-L. Wang , Q. Lin , Y. Wu , S. L. Bud’ko , I. Eremin , D. D. Johnson , P. C. Canfield , and A. Kaminski , Phys. Rev. Lett. 117 , 277001 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.117.277001 [62] 62 H. Ding , P. Richard , K. Nakayama , K. Sugawara , T. Arakane , Y. Sekiba , A. Takayama , S. Souma , T. Sato , T. Takahashi , Z. Wang , X. Dai , Z. Fang , G. F. Chen , J. L. Luo , and N. L. Wang , Europhys. Lett. 83 , 47001 ( 2008 ). EULEEJ 0295-5075 10.1209/0295-5075/83/47001 [63] 63 N. Xu , P. Richard , X. Shi , A. van Roekeghem , T. Qian , E. Razzoli , E. Rienks , G.-F. Chen , E. Ieki , K. Nakayama , T. Sato , T. Takahashi , M. Shi , and H. Ding , Phys. Rev. B 88 , 220508 ( 2013 ). PRBMDO 1098-0121 10.1103/PhysRevB.88.220508 [64] 64 Y. Zhang , Z. R. Ye , Q. Q. Ge , F. Chen , J. Jiang , M. Xu , B. P. Xie , and D. L. Feng , Nat. Phys. 8 , 371 ( 2012 ). NPAHAX 1745-2473 10.1038/nphys2248 [65] 65 D. Liu , Phys. Rev. X 8 , 031033 ( 2018 ). PRXHAE 2160-3308 10.1103/PhysRevX.8.031033 [66] 66 J. J. Lee , F. T. Schmitt , R. G. Moore , S. Johnston , Y.-T. Cui , W. Li , M. Yi , Z. K. Liu , M. Hashimoto , Y. Zhang , D. H. Lu , T. P. Devereaux , D.-H. Lee , and Z.-X. Shen , Nature (London) 515 , 245 ( 2014 ). NATUAS 0028-0836 10.1038/nature13894 [67] 67 X. Shi , Z.-Q. Han , X.-L. Peng , P. Richard , T. Qian , X.-X. Wu , M.-W. Qiu , S. C. Wang , J. P. Hu , Y.-J. Sun , and H. Ding , Nat. Commun. 8 , 14988 ( 2017 ). NCAOBW 2041-1723 10.1038/ncomms14988 [68] 68 A. Charnukha , D. Pröpper , N. D. Zhigadlo , M. Naito , M. Schmidt , Z. Wang , J. Deisenhofer , A. Loidl , B. Keimer , A. V. Boris , and D. N. Basov , Phys. Rev. Lett. 120 , 087001 ( 2018 ). PRLTAO 0031-9007 10.1103/PhysRevLett.120.087001 [69] 69 D. N. Basov and A. V. Chubukov , Nat. Phys. 7 , 272 ( 2011 ). NPAHAX 1745-2473 10.1038/nphys1975 [70] 70 K. A. Musaelian , J. Betouras , A. V. Chubukov , and R. Joynt , Phys. Rev. B 53 , 3598 ( 1996 ). PRBMDO 0163-1829 10.1103/PhysRevB.53.3598 [71] 71 D. Pelc , P. Popčević , G. Yu , M. Požek , M. Greven , and N. Barišić , arXiv:1710.10221 . [72] 72 K. K. Gomes , A. N. Pasupathy , A. Pushp , S. Ono , Y. Ando , and A. Yazdani , Nature (London) 447 , 569 ( 2007 ). NATUAS 0028-0836 10.1038/nature05881 [73] 73 N. K. Sato , N. Aso , K. Miyake , R. Shiina , P. Thalmeier , G. Varelogiannis , C. Geibel , F. Steglich , P. Fulde , and T. Komatsubara , Nature (London) 410 , 340 ( 2001 ). NATUAS 0028-0836 10.1038/35066519 [74] 74 D. Daghero , M. Tortello , G. Ummarino , J.-C. Griveau , E. Colineau , R. Eloirdi , A. Shick , J. Kolorenc , A. Lichtenstein , and R. Caciuffo , Nat. Commun. 3 , 786 ( 2012 ). NCAOBW 2041-1723 10.1038/ncomms1785 [75] 75 R. Lortz , Y. Wang , A. Demuer , P. H. M. Böttger , B. Bergk , G. Zwicknagl , Y. Nakazawa , and J. Wosnitza , Phys. Rev. Lett. 99 , 187002 ( 2007 ). PRLTAO 0031-9007 10.1103/PhysRevLett.99.187002 [76] 76 Z. P. Yin , K. Haule , and G. Kotliar , Nat. Phys. 10 , 845 ( 2014 ). NPAHAX 1745-2473 10.1038/nphys3116 [77] 77 R. Nourafkan , G. Kotliar , and A.-M. S. Tremblay , Phys. Rev. Lett. 117 , 137001 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.117.137001 [78] 78 G. A. Ummarino , Phys. Rev. B 83 , 092508 ( 2011 ). PRBMDO 1098-0121 10.1103/PhysRevB.83.092508
Publisher Copyright:
© 2018 American Physical Society.