TY - JOUR
T1 - Paenibacillus lentimorbus inoculation enhances tobacco growth and extenuates the virulence of cucumber mosaic virus
AU - Kumar, Susheel
AU - Chauhan, Puneet Singh
AU - Agrawal, Lalit
AU - Raj, Rashmi
AU - Srivastava, Ashish
AU - Gupta, Swati
AU - Mishra, Shashank Kumar
AU - Yadav, Sumit
AU - Singh, Poonam C.
AU - Raj, Shri Krishna
AU - Nautiyal, Chandra Shekhar
N1 - Publisher Copyright:
© 2016 Kumar et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2016/3
Y1 - 2016/3
N2 - Previous studies with Paenibacillus lentimorbus B-30488" (hereafter referred as B-30488), a plant growth promoting rhizobacteria (PGPR) isolated from cow's milk, revealed its capabilities to improve plant quality under normal and stress conditions. Present study investigates its potential as a biocontrol agent against an economically important virus, Cucumber mosaic virus (CMV), in Nicotiana tabacum cv. White Burley plants and delineates the physical, biophysical, biochemical and molecular perturbations due to the trilateral interactions of PGPRhost- CMV. Soil inoculation of B-30488 enhanced the plant vigor while significantly decreased the virulence and virus RNA accumulation by ~12 fold (91%) in systemic leaves of CMV infected tobacco plants as compared to the control ones. Histology of these leaves revealed the improved tissue's health and least aging signs in B-30488 inoculated tobacco plants, with or without CMV infection, and showed lesser intercellular spaces between collenchyma cells, reduced amount of xyloglucans and pectins in connecting primary cells, and higher polyphenol accumulation in hypodermis layer extending to collenchyma cells. B-30488 inoculation has favorably maneuvered the essential biophysical (ion leakage and photosynthetic efficiency) and biochemical (sugar, proline, chlorophyll, malondialdehyde, acid phosphatase and alkaline phosphatase) attributes of tobacco plants to positively regulate and release the virus stress. Moreover, activities of defense related enzymes (ascorbate peroxidase, guaiacol peroxidase, superoxide dismutase and catalase) induced due to CMV-infection were ameliorated with inoculation of B-30488, suggesting systemic induced resistance mediated protection against CMV in tobacco. The quantitative RT-PCR analyses of the genes related to normal plant development, stress and pathogenesis also corroborate well with the biochemical data and revealed the regulation (either up or down) of these genes in favor of plant to combat the CMV mediated stress. These improvements led tobacco plant to produce more flowers and seeds with no negative impact on plant health. The present study may advocate the applicability of B-30488 for crop yield improvement in virus infested areas.
AB - Previous studies with Paenibacillus lentimorbus B-30488" (hereafter referred as B-30488), a plant growth promoting rhizobacteria (PGPR) isolated from cow's milk, revealed its capabilities to improve plant quality under normal and stress conditions. Present study investigates its potential as a biocontrol agent against an economically important virus, Cucumber mosaic virus (CMV), in Nicotiana tabacum cv. White Burley plants and delineates the physical, biophysical, biochemical and molecular perturbations due to the trilateral interactions of PGPRhost- CMV. Soil inoculation of B-30488 enhanced the plant vigor while significantly decreased the virulence and virus RNA accumulation by ~12 fold (91%) in systemic leaves of CMV infected tobacco plants as compared to the control ones. Histology of these leaves revealed the improved tissue's health and least aging signs in B-30488 inoculated tobacco plants, with or without CMV infection, and showed lesser intercellular spaces between collenchyma cells, reduced amount of xyloglucans and pectins in connecting primary cells, and higher polyphenol accumulation in hypodermis layer extending to collenchyma cells. B-30488 inoculation has favorably maneuvered the essential biophysical (ion leakage and photosynthetic efficiency) and biochemical (sugar, proline, chlorophyll, malondialdehyde, acid phosphatase and alkaline phosphatase) attributes of tobacco plants to positively regulate and release the virus stress. Moreover, activities of defense related enzymes (ascorbate peroxidase, guaiacol peroxidase, superoxide dismutase and catalase) induced due to CMV-infection were ameliorated with inoculation of B-30488, suggesting systemic induced resistance mediated protection against CMV in tobacco. The quantitative RT-PCR analyses of the genes related to normal plant development, stress and pathogenesis also corroborate well with the biochemical data and revealed the regulation (either up or down) of these genes in favor of plant to combat the CMV mediated stress. These improvements led tobacco plant to produce more flowers and seeds with no negative impact on plant health. The present study may advocate the applicability of B-30488 for crop yield improvement in virus infested areas.
UR - http://www.scopus.com/inward/record.url?scp=84961137785&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84961137785&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0149980
DO - 10.1371/journal.pone.0149980
M3 - Article
C2 - 26934600
AN - SCOPUS:84961137785
SN - 1932-6203
VL - 11
JO - PloS one
JF - PloS one
IS - 3
M1 - e0149980
ER -