TY - JOUR
T1 - Overexpression of VIRE2-INTERACTING PROTEIN2 in Arabidopsis regulates genes involved in Agrobacterium-mediated plant transformation and abiotic stresses
AU - Raman, Vidhyavathi
AU - Anand, Ajith
AU - Vasudevan, Balaji
AU - Morsy, Mustafa R.
AU - Pant, Bikram D.
AU - Lee, Hee Kyung
AU - Tang, Yuhong
AU - Mysore, Kirankumar S.
N1 - Publisher Copyright:
© 2019, The Author(s).
PY - 2019/12/1
Y1 - 2019/12/1
N2 - Arabidopsis VIRE2-INTERACTING PROTEIN2 (VIP2) was previously described as a protein with a NOT domain, and Arabidopsis vip2 mutants are recalcitrant to Agrobacterium-mediated root transformation. Here we show that VIP2 is a transcription regulator and the C-terminal NOT2 domain of VIP2 interacts with VirE2. Interestingly, AtVIP2 overexpressor lines in Arabidopsis did not show an improvement in Agrobacterium-mediated stable root transformation, but the transcriptome analysis identified 1,634 differentially expressed genes compared to wild-type. These differentially expressed genes belonged to various functional categories such as membrane proteins, circadian rhythm, signaling, response to stimulus, regulation of plant hypersensitive response, sequence-specific DNA binding transcription factor activity and transcription regulatory region binding. In addition to regulating genes involved in Agrobacterium-mediated plant transformation, AtVIP2 overexpressor line showed differential expression of genes involved in abiotic stresses. The majority of the genes involved in abscisic acid (ABA) response pathway, containing the Abscisic Acid Responsive Element (ABRE) element within their promoters, were down-regulated in AtVIP2 overexpressor lines. Consistent with this observation, AtVIP2 overexpressor lines were more susceptible to ABA and other abiotic stresses. Based on the above findings, we hypothesize that VIP2 not only plays a role in Agrobacterium-mediated plant transformation but also acts as a general transcriptional regulator in plants.
AB - Arabidopsis VIRE2-INTERACTING PROTEIN2 (VIP2) was previously described as a protein with a NOT domain, and Arabidopsis vip2 mutants are recalcitrant to Agrobacterium-mediated root transformation. Here we show that VIP2 is a transcription regulator and the C-terminal NOT2 domain of VIP2 interacts with VirE2. Interestingly, AtVIP2 overexpressor lines in Arabidopsis did not show an improvement in Agrobacterium-mediated stable root transformation, but the transcriptome analysis identified 1,634 differentially expressed genes compared to wild-type. These differentially expressed genes belonged to various functional categories such as membrane proteins, circadian rhythm, signaling, response to stimulus, regulation of plant hypersensitive response, sequence-specific DNA binding transcription factor activity and transcription regulatory region binding. In addition to regulating genes involved in Agrobacterium-mediated plant transformation, AtVIP2 overexpressor line showed differential expression of genes involved in abiotic stresses. The majority of the genes involved in abscisic acid (ABA) response pathway, containing the Abscisic Acid Responsive Element (ABRE) element within their promoters, were down-regulated in AtVIP2 overexpressor lines. Consistent with this observation, AtVIP2 overexpressor lines were more susceptible to ABA and other abiotic stresses. Based on the above findings, we hypothesize that VIP2 not only plays a role in Agrobacterium-mediated plant transformation but also acts as a general transcriptional regulator in plants.
UR - https://www.scopus.com/pages/publications/85072383556
UR - https://www.scopus.com/inward/citedby.url?scp=85072383556&partnerID=8YFLogxK
U2 - 10.1038/s41598-019-49590-3
DO - 10.1038/s41598-019-49590-3
M3 - Article
C2 - 31534160
AN - SCOPUS:85072383556
SN - 2045-2322
VL - 9
JO - Scientific reports
JF - Scientific reports
IS - 1
M1 - 13503
ER -