Outlier identification via randomized adaptive compressive sampling

Xingguo Li, Jarvis D Haupt

Research output: Chapter in Book/Report/Conference proceedingConference contribution

8 Scopus citations

Abstract

This paper examines the problem of locating outlier columns in a large, otherwise low-rank, matrix. We propose a simple two-step adaptive sensing and inference approach and establish theoretical guarantees for its performance. Our results show that accurate outlier identification is achievable using very few linear summaries of the original data matrix -as few as the squared rank of the low-rank component plus the number of outliers, times constant and logarithmic factors. We demonstrate the performance of our approach experimentally in two stylized applications, one motivated by robust collaborative filtering tasks, and the other by saliency map estimation tasks arising in computer vision and automated surveillance.

Original languageEnglish (US)
Title of host publication2015 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2015 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3302-3306
Number of pages5
ISBN (Electronic)9781467369978
DOIs
StatePublished - Aug 4 2015
Event40th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2015 - Brisbane, Australia
Duration: Apr 19 2014Apr 24 2014

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2015-August
ISSN (Print)1520-6149

Other

Other40th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2015
CountryAustralia
CityBrisbane
Period4/19/144/24/14

Keywords

  • Adaptive and compressive sensing
  • robust PCA

Fingerprint Dive into the research topics of 'Outlier identification via randomized adaptive compressive sampling'. Together they form a unique fingerprint.

Cite this