Abstract
This paper examines the problem of locating outlier columns in a large, otherwise low-rank, matrix. We propose a simple two-step adaptive sensing and inference approach and establish theoretical guarantees for its performance. Our results show that accurate outlier identification is achievable using very few linear summaries of the original data matrix -as few as the squared rank of the low-rank component plus the number of outliers, times constant and logarithmic factors. We demonstrate the performance of our approach experimentally in two stylized applications, one motivated by robust collaborative filtering tasks, and the other by saliency map estimation tasks arising in computer vision and automated surveillance.
Original language | English (US) |
---|---|
Title of host publication | 2015 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2015 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 3302-3306 |
Number of pages | 5 |
ISBN (Electronic) | 9781467369978 |
DOIs | |
State | Published - Aug 4 2015 |
Event | 40th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2015 - Brisbane, Australia Duration: Apr 19 2014 → Apr 24 2014 |
Publication series
Name | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
---|---|
Volume | 2015-August |
ISSN (Print) | 1520-6149 |
Other
Other | 40th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2015 |
---|---|
Country/Territory | Australia |
City | Brisbane |
Period | 4/19/14 → 4/24/14 |
Bibliographical note
Publisher Copyright:© 2015 IEEE.
Keywords
- Adaptive and compressive sensing
- robust PCA