Abstract
Purpose: Mitochondrial trifunctional protein deficiency (TFPD) and isolated long chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) are two related defects of fatty acid β -oxidation. While NBS has decreased mortality, morbidity remains significant. Additionally, the relationship of genotype to clinical outcome remains unclear. To better understand these issues, we collected natural history data for these conditions by reviewing seven years of retrospective data from 45 cases of TFPD or LCHADD in the Inborn Errors of Metabolism – Information System. Methods: Available data included age at database entry, last datapoint, and development of various complications. Data were analyzed by clinical assigned diagnosis (LCHADD or TFPD), subdivided by method of ascertainment (newborn screening-NBS, or other than by newborn screening-NNBS), then re-analyzed based on four genotype groups: homozygous c.1528GC (p.E510Q) (common LCHAD variant); heterozygous c.1528GC (p.E510Q), other HADHA variants; and HADHB variants. Results: Forty-five patients from birth to 34 years of age were analyzed by assigned diagnosis (30 LCHADD and 15 TFPD) and method of ascertainment. Thirty had further analysis by genotype (22 biallelic HADHA variants and 8 biallelic HADHB variants). With regards to maternal complications, retinopathy, cardiomyopathy and hypoglycemia, patients with biallelic HADHA variants (with or without the common LCHAD variant) manifest a traditional LCHADD phenotype, while those with HADHB gene variants more commonly reported neuromusculoskeletal type TFPD phenotype. While retinopathy, rhabdomyolysis and peripheral neuropathy tended to present later in childhood, many features including initial report of cardiomyopathy and hypoglycemia presented across a wide age spectrum. Conclusion: This study demonstrates the utility of genotypic confirmation of patients identified with LCHADD/TFPD as variants in the HADHA and HADHB genes lead to different symptom profiles. In our data, biallelic HAHDA variants conferred a LCHADD phenotype, regardless of the presence of the common LCHAD variant.
Original language | English (US) |
---|---|
Article number | 100884 |
Journal | Molecular Genetics and Metabolism Reports |
Volume | 32 |
DOIs | |
State | Published - Sep 2022 |
Bibliographical note
Funding Information:Research reported in this publication was supported by the Eunice Kennedy Shriver National Institute of Child Health and Development (NICHD), National Institutes of Health under award number 5R01HD069039 to SB. JV was supported in part by NIH grant RO1 DK1099078.
Publisher Copyright:
© 2022 The Authors
Keywords
- Fatty acid oxidation disorders
- Genetics
- Inborn errors of metabolism
- LCHAD
- MTFP
- Mitochondrial trifunctional protein
- Pediatrics
- TFP
- Trifunctional protein