Osteoclasts direct bystander killing of bone cancer

Margaret L. Ramnaraine, Wendy E. Mathews, James M. Donohue, Christine M. Lynch, Michael J. Goblirsch, Denis R. Clohisy

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Primary and metastatic bone cancers are difficult to eradicate and novel approaches are needed to improve treatment and extend life. As bone cancer grows, osteoclasts, the principal bone-resorbing cells of the body, are recruited to and activated at sites of cancer. In this investigation, we determined if osteoclast lineage cells could function as a cell-based gene delivery system to bone cancers. We used the cytosine deaminase (CD) 5-fluorocytosine (5-FC) enzyme/prodrug system and studied bone marrow and bones from transgenic mice expressing a novel CD gene regulated by the osteoclast tartrate-resistant acid phosphatase (TRAP) gene promoter (Tg/NCD). DsRed2-labeled 2472 sarcoma cells were placed in Tg/NCD osteoclastogenic cultures and treated with 5-FC. 5-FC treatment resulted in profound bystander killing (90%; P < 0.05). The effect of 5-FC treatment on osteoclast lineage cells was most dramatic when administered at the beginning of the 7-day cultures, suggesting that mature osteoclasts are less sensitive to 5-FC. Evaluation of osteoclast-directed bystander killing in vivo revealed dramatic killing of bone cancer with only a modest effect on osteoclast number. Specifically, 5-FC treatment of tumor-bearing Tg/NCD mice or Tg/NCD bone marrow transplanted C3H mice (Tg/NCD-C3H) resulted in 92% and 44% reductions in tumor area, respectively (P < 0.05). Eight often 5-FC-treated Tg/NCD mice had complete bone tumor killing and five of six 5-FC-treated Tg/NCD-C3H mice had reduced tumor compared with controls. In addition, Tg/NCD osteoclasts were resistant to 5-FC treatment in vivo, a very important feature, as it identifies osteoclasts as an ideal CD gene delivery system.

Original languageEnglish (US)
Pages (from-to)10929-10935
Number of pages7
JournalCancer Research
Volume66
Issue number22
DOIs
StatePublished - Nov 15 2006

Fingerprint Dive into the research topics of 'Osteoclasts direct bystander killing of bone cancer'. Together they form a unique fingerprint.

Cite this