Abstract
ORM (yeast)-like protein isoform 3 (ORMDL3) has recently been identified as a candidate gene for susceptibility to asthma; however, the mechanisms by which it contributes to asthma pathogenesis are not well understood. Here we demonstrate a functional role for ORMDL3 in eosinophils in the context of allergic inflammation. Eosinophils recruited to the airways of allergen-challenged mice express ORMDL3. ORMDL3 expression in bone marrow eosinophils is localized in the endoplasmic reticulum and is induced by interleukin-3 and eotaxin-1. Overexpression of ORMDL3 in eosinophils causes increased rolling, distinct cytoskeletal rearrangement, extracellular signal-regulated kinase (1/2) phosphorylation and nuclear translocation of nuclear factor kappa B. Knockdown of ORMDL3 significantly inhibits activation-induced cell shape changes, adhesion and recruitment to sites of inflammation in vivo, combined with reduced expression of CD49d and CD18. In addition, ORMDL3 regulates interleukin-3-induced expression of CD48 and CD48-mediated eosinophil degranulation. These studies show that ORMDL3 regulates eosinophil trafficking, recruitment and degranulation, further elucidating a role for this molecule in allergic asthma and potentially other eosinophilic disorders.
Original language | English (US) |
---|---|
Article number | 2479 |
Journal | Nature communications |
Volume | 4 |
DOIs | |
State | Published - 2013 |
Bibliographical note
Funding Information:The authors wish to thank Yana Greenberg for excellent technical assistance. This work was supported by NIH Grant no. HL108000 and AI35796 to P.S.