TY - JOUR
T1 - Organic and inorganic speciation of particulate matter formed during different combustion phases in an improved cookstove
AU - Leavey, Anna
AU - Patel, Sameer
AU - Martinez, Raul
AU - Mitroo, Dhruv
AU - Fortenberry, Claire
AU - Walker, Michael
AU - Williams, Brent
AU - Biswas, Pratim
N1 - Publisher Copyright:
© 2017
PY - 2017
Y1 - 2017
N2 - Residential solid fuel combustion in cookstoves has established health impacts including bladder and lung cancers, cataracts, low birth weight, and pneumonia. The chemical composition of particulate matter (PM) from 4 commonly-used solid fuels (coal, dung, ambient/dry applewood, and oakwood pellets), emitted from a gasifier cookstove, as well as propane, were examined. Temporal changes between the different cookstove burn-phases were also explored. Normalized concentrations of non-refractory PM1, total organics, chloride, ammonium, nitrate, sulfate, and 41 particle-phase polycyclic aromatic hydrocarbons (PAHs) were measured using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and a Thermal desorption Aerosol Gas chromatograph (TAG), respectively. Coal demonstrated the highest fraction of organic matter in its particulate emission composition (98%), followed by dung (94%). Coal and dung also demonstrated the highest numbers and concentrations of PAHs. While dry applewood emitted ten times lower organic matter compared to ambient applewood, a higher fraction of these organics was composed of PAHs, especially the more toxic ones such as benzo(a)pyrene (9.63 ng/L versus 0.04 ng/L), and benzo(b)fluoranthene (31.32 ng/L versus 0.19 ng/L). Data from the AMS demonstrated no clear trends for any of the combustion fuels over the different combustion phases unlike the previously reported trends observed for the physical characteristics. Of the solid fuels, pellets demonstrated the lowest emissions. Emissions from propane were below the quantification limit of the instruments. This work highlights the benefits of incorporating additional metrics into the cookstove evaluation process, thus enriching the existing PM data inventory.
AB - Residential solid fuel combustion in cookstoves has established health impacts including bladder and lung cancers, cataracts, low birth weight, and pneumonia. The chemical composition of particulate matter (PM) from 4 commonly-used solid fuels (coal, dung, ambient/dry applewood, and oakwood pellets), emitted from a gasifier cookstove, as well as propane, were examined. Temporal changes between the different cookstove burn-phases were also explored. Normalized concentrations of non-refractory PM1, total organics, chloride, ammonium, nitrate, sulfate, and 41 particle-phase polycyclic aromatic hydrocarbons (PAHs) were measured using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and a Thermal desorption Aerosol Gas chromatograph (TAG), respectively. Coal demonstrated the highest fraction of organic matter in its particulate emission composition (98%), followed by dung (94%). Coal and dung also demonstrated the highest numbers and concentrations of PAHs. While dry applewood emitted ten times lower organic matter compared to ambient applewood, a higher fraction of these organics was composed of PAHs, especially the more toxic ones such as benzo(a)pyrene (9.63 ng/L versus 0.04 ng/L), and benzo(b)fluoranthene (31.32 ng/L versus 0.19 ng/L). Data from the AMS demonstrated no clear trends for any of the combustion fuels over the different combustion phases unlike the previously reported trends observed for the physical characteristics. Of the solid fuels, pellets demonstrated the lowest emissions. Emissions from propane were below the quantification limit of the instruments. This work highlights the benefits of incorporating additional metrics into the cookstove evaluation process, thus enriching the existing PM data inventory.
KW - Biomass
KW - Improved cookstoves
KW - PAHs, AMS
KW - TAG
UR - http://www.scopus.com/inward/record.url?scp=85020278450&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85020278450&partnerID=8YFLogxK
U2 - 10.1016/j.envres.2017.05.025
DO - 10.1016/j.envres.2017.05.025
M3 - Article
C2 - 28599193
AN - SCOPUS:85020278450
SN - 0013-9351
VL - 158
SP - 33
EP - 42
JO - Environmental Research
JF - Environmental Research
ER -