TY - JOUR
T1 - Orbit nonproper dynamics on Lorentz manifolds
AU - Adams, Scot
PY - 2001
Y1 - 2001
N2 - An action of a topological group G on a topological space X is orbit nonproper if, for some cursive Greek chi ∈ X, the map g → gcursive Greek chi : G → X is nonproper. We describe the collection of connected, simply connected Lie groups admitting a locally faithful, orbit nonproper action by isometries of a connected Lorentz manifold.
AB - An action of a topological group G on a topological space X is orbit nonproper if, for some cursive Greek chi ∈ X, the map g → gcursive Greek chi : G → X is nonproper. We describe the collection of connected, simply connected Lie groups admitting a locally faithful, orbit nonproper action by isometries of a connected Lorentz manifold.
UR - http://www.scopus.com/inward/record.url?scp=0035657655&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035657655&partnerID=8YFLogxK
U2 - 10.1215/ijm/1258138062
DO - 10.1215/ijm/1258138062
M3 - Article
AN - SCOPUS:0035657655
VL - 45
SP - 1191
EP - 1245
JO - Illinois Journal of Mathematics
JF - Illinois Journal of Mathematics
SN - 0019-2082
IS - 4
ER -