Optimizing spatial spectral patterns jointly with channel configuration for brain-computer interface

Jianjun Meng, Gan Huang, Dingguo Zhang, Xiangyang Zhu

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

The power of common spatial pattern (CSP) has been widely validated in electroencephalogram (EEG) based brain-computer interface (BCI). However, its effectiveness is highly dependent on subject-specific time segment, channel configuration and frequency band. Hence, the preprocessing procedure of CSP algorithm is critical to enhance the performance of BCI system. This paper proposes a feature extraction and selection method based on common spatial and spectral pattern for motor imagery brain-computer interface (BCI). We formulate the optimization of spatial spectral patterns, channel configuration and time segment as maximizing the proposed criterions including mutual information algorithm, Fisher ratio algorithm and wrapper method. The proposed method is evaluated on single trial EEG from dataset IVa of BCI competition III. The results show that best features are selected by a wrapper method and these features in cross-validation yield better performance compared to most of the reported results.

Original languageEnglish (US)
Pages (from-to)115-126
Number of pages12
JournalNeurocomputing
Volume104
DOIs
StatePublished - Mar 15 2013

Bibliographical note

Funding Information:
This work was supported by National Basic Research Program (973 Program) of China (No. 2011CB013305 ), National Natural Science Foundation of China (No. 51075265 ), the Science and Technology Commission of Shanghai Municipality (Grant No. 11JC1406000).

Copyright:
Copyright 2013 Elsevier B.V., All rights reserved.

Keywords

  • Brain-computer interface (BCI)
  • Channel configuration
  • Common spatial pattern (CSP)
  • Feature selection
  • Spatial spectral pattern
  • Time segment

Fingerprint Dive into the research topics of 'Optimizing spatial spectral patterns jointly with channel configuration for brain-computer interface'. Together they form a unique fingerprint.

Cite this