Optimizing Multiscale Entropy Approach for Rotor Core Identification using Simulated Intracardiac Electrograms

Vasanth Ravikumar, Elena G. Tolkacheva

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Atrial Fibrillation (AF) is most common sustained cardiac arrhythmia and a precursor to many fatal cardiac conditions. Catheter ablation, which is a minimally invasive treatment, is associated with limited success rates in patients with persistent AF. Rotors are believed to maintain AF and core of rotors are considered to be robust targets for ablation. Recently, multiscale entropy (MSE) was proposed to identify the core of rotors in ex-vivo rabbit hearts. However, MSE technique is sensitive to intrinsic parameters, such as scale factor and template dimension, that may lead to an imprecise estimation of entropy measures. The purpose of this research is optimize MSE approach to improve its accuracy and sensitivity in rotor core identification using simulated EGMs from human atrial model. Specifically, we have identified the optimal time scale factor (τopt) and optimal template dimension (Τopt) that are needed for efficient rotor core identification. The τopt was identified to be 10, using a convergence graph, and the Τopt (~20 ms) remained the same at different sampling rates, indicating that optimized MSE will be efficient in identifying core of the rotor irrespective of the signal acquisition system.

Original languageEnglish (US)
Title of host publication42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEnabling Innovative Technologies for Global Healthcare, EMBC 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages414-417
Number of pages4
Volume2020
ISBN (Electronic)9781728119908
DOIs
StatePublished - Jul 2020
Event42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020 - Montreal, Canada
Duration: Jul 20 2020Jul 24 2020

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2020-July
ISSN (Print)1557-170X

Conference

Conference42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020
Country/TerritoryCanada
CityMontreal
Period7/20/207/24/20

Bibliographical note

Publisher Copyright:
© 2020 IEEE.

Keywords

  • Atrial Fibrillation
  • Multiscale Entropy
  • Rotor
  • Rabbits
  • Atrial Fibrillation/surgery
  • Animals
  • Heart Atria
  • Humans
  • Catheter Ablation
  • Entropy
  • Electrophysiologic Techniques, Cardiac

PubMed: MeSH publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Journal Article

Fingerprint

Dive into the research topics of 'Optimizing Multiscale Entropy Approach for Rotor Core Identification using Simulated Intracardiac Electrograms'. Together they form a unique fingerprint.

Cite this