TY - GEN
T1 - Optimizing Multiscale Entropy Approach for Rotor Core Identification using Simulated Intracardiac Electrograms
AU - Ravikumar, Vasanth
AU - Tolkacheva, Elena G.
N1 - Publisher Copyright:
© 2020 IEEE.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/7
Y1 - 2020/7
N2 - Atrial Fibrillation (AF) is most common sustained cardiac arrhythmia and a precursor to many fatal cardiac conditions. Catheter ablation, which is a minimally invasive treatment, is associated with limited success rates in patients with persistent AF. Rotors are believed to maintain AF and core of rotors are considered to be robust targets for ablation. Recently, multiscale entropy (MSE) was proposed to identify the core of rotors in ex-vivo rabbit hearts. However, MSE technique is sensitive to intrinsic parameters, such as scale factor and template dimension, that may lead to an imprecise estimation of entropy measures. The purpose of this research is optimize MSE approach to improve its accuracy and sensitivity in rotor core identification using simulated EGMs from human atrial model. Specifically, we have identified the optimal time scale factor (τopt) and optimal template dimension (Τopt) that are needed for efficient rotor core identification. The τopt was identified to be 10, using a convergence graph, and the Τopt (~20 ms) remained the same at different sampling rates, indicating that optimized MSE will be efficient in identifying core of the rotor irrespective of the signal acquisition system.
AB - Atrial Fibrillation (AF) is most common sustained cardiac arrhythmia and a precursor to many fatal cardiac conditions. Catheter ablation, which is a minimally invasive treatment, is associated with limited success rates in patients with persistent AF. Rotors are believed to maintain AF and core of rotors are considered to be robust targets for ablation. Recently, multiscale entropy (MSE) was proposed to identify the core of rotors in ex-vivo rabbit hearts. However, MSE technique is sensitive to intrinsic parameters, such as scale factor and template dimension, that may lead to an imprecise estimation of entropy measures. The purpose of this research is optimize MSE approach to improve its accuracy and sensitivity in rotor core identification using simulated EGMs from human atrial model. Specifically, we have identified the optimal time scale factor (τopt) and optimal template dimension (Τopt) that are needed for efficient rotor core identification. The τopt was identified to be 10, using a convergence graph, and the Τopt (~20 ms) remained the same at different sampling rates, indicating that optimized MSE will be efficient in identifying core of the rotor irrespective of the signal acquisition system.
KW - Atrial Fibrillation
KW - Multiscale Entropy
KW - Rotor
UR - http://www.scopus.com/inward/record.url?scp=85091022341&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85091022341&partnerID=8YFLogxK
U2 - 10.1109/EMBC44109.2020.9175773
DO - 10.1109/EMBC44109.2020.9175773
M3 - Conference contribution
C2 - 33018016
AN - SCOPUS:85091022341
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
SP - 414
EP - 417
BT - 42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020
Y2 - 20 July 2020 through 24 July 2020
ER -