Optimizing design with extensive simulation data

A case study of designing a vacuum-assisted biopsy tool

Chi Lun Lin, Dane Coffey, Daniel F Keefe, Arthur G Erdman

Research output: Contribution to journalArticle

Abstract

Design by Dragging (DBD) [1] is a virtual design tool, which displays three-dimensional (3D) visualizations of many simulation results obtained by sampling a large design space and ties this visual display together with a new user interface. The design space is explored through mouse-based interactions performed directly on top of the 3D data visualizations. Our previous study [1] introduced the realization of DBD with a simplistic example of biopsy needle design under a static bending force. This paper considers a realistic problem of designing a vacuum-assisted biopsy (VAB) needle that brings in more technical challenges to include dynamic tissue reaction forces, nonlinear tissue deformation, and progressive tissue damage in an integrated visualization with design suggestions. The emphasis is placed on the inverse design strategy in DBD, which involves clicking directly on a stress (or other output field parameter) contour and dragging it to a new (usually preferable) position on the contour. Subsequently, the software computes the best fit for the design variables for generating a new output stress field based on the user input. Three cases demonstrated how the inverse design can assist users in intuitively and interactively approaching desired design solutions. This paper illustrates how virtual prototyping may be used to replace (or reduce reliance on) purely experimental trial-and-error methods for achieving optimal designs.

Original languageEnglish (US)
Article number021007
JournalJournal of Medical Devices, Transactions of the ASME
Volume12
Issue number2
DOIs
StatePublished - Jun 1 2018

Fingerprint

Biopsy
Vacuum
Needle Biopsy
Software
Tissue
Needles
Visualization
Data visualization
User interfaces
Display devices

Cite this

@article{e63afa95c4db4b23bc750d53e7047824,
title = "Optimizing design with extensive simulation data: A case study of designing a vacuum-assisted biopsy tool",
abstract = "Design by Dragging (DBD) [1] is a virtual design tool, which displays three-dimensional (3D) visualizations of many simulation results obtained by sampling a large design space and ties this visual display together with a new user interface. The design space is explored through mouse-based interactions performed directly on top of the 3D data visualizations. Our previous study [1] introduced the realization of DBD with a simplistic example of biopsy needle design under a static bending force. This paper considers a realistic problem of designing a vacuum-assisted biopsy (VAB) needle that brings in more technical challenges to include dynamic tissue reaction forces, nonlinear tissue deformation, and progressive tissue damage in an integrated visualization with design suggestions. The emphasis is placed on the inverse design strategy in DBD, which involves clicking directly on a stress (or other output field parameter) contour and dragging it to a new (usually preferable) position on the contour. Subsequently, the software computes the best fit for the design variables for generating a new output stress field based on the user input. Three cases demonstrated how the inverse design can assist users in intuitively and interactively approaching desired design solutions. This paper illustrates how virtual prototyping may be used to replace (or reduce reliance on) purely experimental trial-and-error methods for achieving optimal designs.",
author = "Lin, {Chi Lun} and Dane Coffey and Keefe, {Daniel F} and Erdman, {Arthur G}",
year = "2018",
month = "6",
day = "1",
doi = "10.1115/1.4040043",
language = "English (US)",
volume = "12",
journal = "Journal of Medical Devices, Transactions of the ASME",
issn = "1932-6181",
publisher = "American Society of Mechanical Engineers(ASME)",
number = "2",

}

TY - JOUR

T1 - Optimizing design with extensive simulation data

T2 - A case study of designing a vacuum-assisted biopsy tool

AU - Lin, Chi Lun

AU - Coffey, Dane

AU - Keefe, Daniel F

AU - Erdman, Arthur G

PY - 2018/6/1

Y1 - 2018/6/1

N2 - Design by Dragging (DBD) [1] is a virtual design tool, which displays three-dimensional (3D) visualizations of many simulation results obtained by sampling a large design space and ties this visual display together with a new user interface. The design space is explored through mouse-based interactions performed directly on top of the 3D data visualizations. Our previous study [1] introduced the realization of DBD with a simplistic example of biopsy needle design under a static bending force. This paper considers a realistic problem of designing a vacuum-assisted biopsy (VAB) needle that brings in more technical challenges to include dynamic tissue reaction forces, nonlinear tissue deformation, and progressive tissue damage in an integrated visualization with design suggestions. The emphasis is placed on the inverse design strategy in DBD, which involves clicking directly on a stress (or other output field parameter) contour and dragging it to a new (usually preferable) position on the contour. Subsequently, the software computes the best fit for the design variables for generating a new output stress field based on the user input. Three cases demonstrated how the inverse design can assist users in intuitively and interactively approaching desired design solutions. This paper illustrates how virtual prototyping may be used to replace (or reduce reliance on) purely experimental trial-and-error methods for achieving optimal designs.

AB - Design by Dragging (DBD) [1] is a virtual design tool, which displays three-dimensional (3D) visualizations of many simulation results obtained by sampling a large design space and ties this visual display together with a new user interface. The design space is explored through mouse-based interactions performed directly on top of the 3D data visualizations. Our previous study [1] introduced the realization of DBD with a simplistic example of biopsy needle design under a static bending force. This paper considers a realistic problem of designing a vacuum-assisted biopsy (VAB) needle that brings in more technical challenges to include dynamic tissue reaction forces, nonlinear tissue deformation, and progressive tissue damage in an integrated visualization with design suggestions. The emphasis is placed on the inverse design strategy in DBD, which involves clicking directly on a stress (or other output field parameter) contour and dragging it to a new (usually preferable) position on the contour. Subsequently, the software computes the best fit for the design variables for generating a new output stress field based on the user input. Three cases demonstrated how the inverse design can assist users in intuitively and interactively approaching desired design solutions. This paper illustrates how virtual prototyping may be used to replace (or reduce reliance on) purely experimental trial-and-error methods for achieving optimal designs.

UR - http://www.scopus.com/inward/record.url?scp=85050543489&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85050543489&partnerID=8YFLogxK

U2 - 10.1115/1.4040043

DO - 10.1115/1.4040043

M3 - Article

VL - 12

JO - Journal of Medical Devices, Transactions of the ASME

JF - Journal of Medical Devices, Transactions of the ASME

SN - 1932-6181

IS - 2

M1 - 021007

ER -