TY - JOUR
T1 - Optimization of Three Operating Parameters for a Two-Step Fed Sequencing Batch Reactor (SBR) System to Remove Nutrients from Swine Wastewater
AU - Wu, Xiao
AU - Zhu, Jun
AU - Cheng, Jiehong
AU - Zhu, Nanwen
N1 - Publisher Copyright:
© 2015, Springer Science+Business Media New York.
PY - 2015/3
Y1 - 2015/3
N2 - In this study, the effect of three operating parameters, i.e., the first/second volumetric feeding ratio (milliliters/milliliters), the first anaerobic/aerobic (an/oxic) time ratio (minute/minute), and the second an/oxic time ratio (minute/minute), on the performance of a two-step fed sequencing batch reactor (SBR) system to treat swine wastewater for nutrients removal was examined. Central Composite Design, coupled with Response Surface Methodology, was employed to test these parameters at five levels in order to optimize the SBR to achieve the best removal efficiencies for six response variables including total nitrogen (TN), ammonium nitrogen (NH4-N), total phosphorus (TP), dissolved phosphorus (DP), chemical oxygen demand (COD), and biochemical oxygen demand (BOD). The results showed that the three parameters investigated had significant impact on all the response variables (TN, NH4-N, TP, DP, COD, and BOD), although the highest removal efficiency for each individual responses was associated with different combination of the three parameters. The maximum TN, NH4-N, TP, DP, COD, and BOD removal efficiencies of 96.38 %, 95.38 %, 93.62 %, 94.3 %, 95.26 %, and 92.84 % were obtained at the optimal first/second volumetric feeding ratio, first an/oxic time ratio, and second an/oxic time ratio of 3.23, 0.4, and 0.8 for TN; 2.64, 0.72, and 0.76 for NH4-N; 3.08, 1.16, and 1.07 for TP; 1.32, 0.81, and 1.0 for DP; 2.57, 0.96, and 1.12 for COD; and 1.62, 0.64, and 1.61 for BOD, respectively. Good linear relationships between the predicted and observed results for all the response variables were observed.
AB - In this study, the effect of three operating parameters, i.e., the first/second volumetric feeding ratio (milliliters/milliliters), the first anaerobic/aerobic (an/oxic) time ratio (minute/minute), and the second an/oxic time ratio (minute/minute), on the performance of a two-step fed sequencing batch reactor (SBR) system to treat swine wastewater for nutrients removal was examined. Central Composite Design, coupled with Response Surface Methodology, was employed to test these parameters at five levels in order to optimize the SBR to achieve the best removal efficiencies for six response variables including total nitrogen (TN), ammonium nitrogen (NH4-N), total phosphorus (TP), dissolved phosphorus (DP), chemical oxygen demand (COD), and biochemical oxygen demand (BOD). The results showed that the three parameters investigated had significant impact on all the response variables (TN, NH4-N, TP, DP, COD, and BOD), although the highest removal efficiency for each individual responses was associated with different combination of the three parameters. The maximum TN, NH4-N, TP, DP, COD, and BOD removal efficiencies of 96.38 %, 95.38 %, 93.62 %, 94.3 %, 95.26 %, and 92.84 % were obtained at the optimal first/second volumetric feeding ratio, first an/oxic time ratio, and second an/oxic time ratio of 3.23, 0.4, and 0.8 for TN; 2.64, 0.72, and 0.76 for NH4-N; 3.08, 1.16, and 1.07 for TP; 1.32, 0.81, and 1.0 for DP; 2.57, 0.96, and 1.12 for COD; and 1.62, 0.64, and 1.61 for BOD, respectively. Good linear relationships between the predicted and observed results for all the response variables were observed.
KW - Operating parameters optimization
KW - Response surface methodology
KW - Swine manure nutrients removal
KW - Two-step fed SBR
UR - http://www.scopus.com/inward/record.url?scp=84924076907&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84924076907&partnerID=8YFLogxK
U2 - 10.1007/s12010-014-1467-0
DO - 10.1007/s12010-014-1467-0
M3 - Article
C2 - 25564205
AN - SCOPUS:84924076907
SN - 0273-2289
VL - 175
SP - 2857
EP - 2871
JO - Applied Biochemistry and Biotechnology
JF - Applied Biochemistry and Biotechnology
IS - 6
ER -