Optimization of electrode structure for effective particle separation in a micro-fluidic chip

Yun Chen, Souran Manoochehri

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper presents the optimization of electrode structure for effective particle separation in a micro fluidic chip. The purpose of electrodes in the micro fluidic chip is to generate the DEP (dielectrophoresis) force that is perpendicular to the micro channel direction to separate both nDEP and pDEP particles of the same sizes. The particles will experience DEP force when passing through the electric field which is created by electrode arrays located in different positions in the channel. In this study, we optimize the electrode structure by investigating different shapes and dimensions using numerical simulation and modeling. The optimized electrode structure can provide better separation effect due to larger effective area of DEP force and relative small variation of electric field gradient as demonstrated in this study.

Original languageEnglish (US)
Title of host publication15th International Conference on Advanced Vehicle Technologies; 10th International Conference on Design Education; 7th International Conference on Micro- and Nanosystems
PublisherAmerican Society of Mechanical Engineers
ISBN (Print)9780791855843
DOIs
StatePublished - 2013
Externally publishedYes
EventASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2013 - Portland, OR, United States
Duration: Aug 4 2013Aug 7 2013

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume1

Other

OtherASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2013
Country/TerritoryUnited States
CityPortland, OR
Period8/4/138/7/13

Keywords

  • Dielectrophoresis
  • Optimization
  • Particle Separation

Fingerprint

Dive into the research topics of 'Optimization of electrode structure for effective particle separation in a micro-fluidic chip'. Together they form a unique fingerprint.

Cite this