Abstract
We propose a robust optimization-based approach for the optimal voltage regulation of a distribution system in the presence of renewable solar uncertainty. The variability in renewable solar is modeled as deterministic but norm-bounded uncertainty. The structure of the uncertainty entering in the optimization problem is exploited to propose a primal-dual gradient dynamics to solve the robust optimization problem. Simulation results are presented involving a realistic three-phase unbalanced IEEE 13-bus distribution test system to demonstrate the applications of the developed framework.
Original language | English (US) |
---|---|
Title of host publication | 2019 American Control Conference, ACC 2019 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 3255-3260 |
Number of pages | 6 |
ISBN (Electronic) | 9781538679265 |
DOIs | |
State | Published - Jul 2019 |
Event | 2019 American Control Conference, ACC 2019 - Philadelphia, United States Duration: Jul 10 2019 → Jul 12 2019 |
Publication series
Name | Proceedings of the American Control Conference |
---|---|
Volume | 2019-July |
ISSN (Print) | 0743-1619 |
Conference
Conference | 2019 American Control Conference, ACC 2019 |
---|---|
Country/Territory | United States |
City | Philadelphia |
Period | 7/10/19 → 7/12/19 |
Bibliographical note
Funding Information:The authors are with the Department of Electrical and Computer Engineering at Iowa State University. Financial support from the Department of Energy’s Grant number DE-OE 0000876 is gratefully acknowledged.
Publisher Copyright:
© 2019 American Automatic Control Council.